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ABSTRACT
AI systems designed for personalized coaching and instruction can
leverage repeated interactions to improve upon the assistance they
provide to the learners. There exist different levels of complexity at
which instructions can be presented. For example, "go to my office"
and "walk forward 5 steps" are two navigation commands with dif-
ferent complexities and knowledge prerequisites. The appropriate
complexity level of instruction varies as the student knowledge
and cognitive state, task, and environment change. By maintain-
ing a model of student understanding, an AI assistant can adapt its
teaching strategy to the capabilities of human partners. An accurate
assessment of the student’s ability is thus critical for dependable
and effective human-AI coaching. We present a closed-loop inter-
action framework that adapts the level of information complexity
based on the human partner’s observable cognitive understanding.
This work-in-progress investigates how knowledge and prepara-
tion impact the suitability of different complexity levels, motivating
dynamic interaction.

CCS CONCEPTS
•Human-centered computing→ Interaction design process
and methods; Activity centered design.
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1 INTRODUCTION
In order to effectively assist humans, an AI agent should be able
to (1) evaluate human behavior, and (2) plan actions according to
its understanding of the human partner [3, 14]. Specifically, we
aim to design effective human-AI instruction. Human teachers and
coaches must infer and assess their students’ limitations and mas-
tery in order to adapt content and style in response. Similarly, an
AI instructor must not only track a student’s actions, but also be
able to infer their intentions, cognitive state, and level of under-
standing. By iteratively improving upon its model of the human,
an AI instructor can better adapt its interactions to the needs of the
human.

The objective of matching human skill to method of assistance
is a concept in game design, which aims to maintain equilibrium
between stress, arousal, and performance [11, 17]. External assis-
tance techniques at an appropriate difficulty level can influence a
player’s performance and promote cognitive flow [17]. In coaching,
balancing instruction method and player preparedness manages
stress and engagement. For example, a coach who commands a be-
ginner player with esoteric terms may confuse, not assist, the player.
Similarly, a coach who uses far too basic instructions towards an
experienced player may frustrate and disengage the player [1].

Thus, the primary research question is How can assistance be
adapted to the knowledge and cognitive states of humans? Without
explicitly querying a human, can AI systems infer what level of
interaction complexity is appropriate? Our experiments next in-
vestigate how humans with varying knowledge interact with this
adaptive system.

In this work, we use an AI-guided search-and-rescue task. Search-
and-rescue tasks are especially difficult when the rescuer has a
limited or obscured field of view and does not know where in the
building the injured victims are located. Thus, the primary task
is navigation through an uncertain environment. The AI guide,
having knowledge of the building layout and victim locations, must
help the human rescuer navigate to all victims throughout the build-
ing as quickly as possible. Navigation instructions can be provided
at varying levels of complexity. Higher complexity instructions
require more prerequisite information. At the highest level of com-
plexity, the AI coach may instruct the rescuer, "Go to Destination
C." This requires the rescuer to have stored knowledge of each
destination location. At the lowest level, the command, "take 1 step
forward" does not require any prerequisite information.

In this work, we introduce a closed-loop, interaction framework
for an AI instructor to guide human students. The interaction is
comprised of (1) an EVALUATE step, where the AI infers the intent
and understanding of the human student, and (2) an ADAPT step, in
which the AI adapts the complexity level of instructions presented
to the student to better suit their cognitive understanding of the
task and directions at hand.

The adaptation process is the outcome of repeated interactions
between student and instructor. Gaines [6] describes adaptive in-
struction as consisting of three elements: (1) evaluation of learning
outcome, (2) adaptive logic for dynamically changing the learning
process, and (3) an adaptive variable that changes the training task
or environment.

Figure 1: 2D gridworld view of search and rescue task pro-
vided to participants.
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Evaluating the human learner’s performance and surveying their
experience allows us to measure the efficacy of various instruction
complexity levels for a particular learner. The adaptive logic for
dynamically changing the learning process occurs based on the
learner’s perceived understanding. We observe the learner’s be-
havior to measure their understanding. The adaptive variable that
changes throughout the interaction is the complexity level of navi-
gation instruction provided to the rescuer (Section 2.2).

2 PRELIMINARIES
2.1 Task Scenario
We construct a damaged office building in a 2D gridworld environ-
ment as the task scenario for a single human rescuer (see Figure
2). There are 20 injured victims inside of the building who need
to be found and rescued. Of these, 7 victims are severely injured
(denoted in red), and will expire if not treated in time. The rest are
moderately injured (denoted in blue), and will persist the duration
of the 4-minute game. The AI guide will provide on-screen naviga-
tion instructions throughout the game to help the player navigate
to all victims in time (see Figure 1). The task of the human player
is to follow the coach’s instructions to save all victims.

2.2 Instruction Complexity Levels
2.2.1 Human Level Assignment. The AI instructor maintains a
single-parameter model of the rescuer. The rescuer is assigned a
specific instruction complexity level 𝛽 , which determines the com-
plexity of text-based navigation instructions at which the coach
will interact with the rescuer [5, 19, 20]. Instruction complexity
is defined by the amount of prerequisite knowledge required to
understand the instruction. There are 3 total levels: Level 1 (L1):
LOW, Level 2 (L2): MID, Level 3 (L3): HIGH.

2.2.2 Definition. Each level is defined by a vocabulary corpus 𝑉𝑖 ,
where 𝑖 indicates the level. Each corpus is comprised of a set of
actions and objects, 𝑉𝑖 = (𝐴𝑖 ,𝑂𝑖 ). An instruction is an (action,
object) tuple. ROOMS is the set of room names in the building map.

𝐴3 = {Go to, Triage}
𝑂3 = ROOMS ∪ {Red Victim, Blue Victim}

𝐴2 = {Turn, Proceed, Enter, Exit, Approach and Save}
𝑂2 = N × {Room, Hallway, Intersection, left, right, red victim
blue victim}

𝐴1 = {Walk forward, Turn, Stop, Utilize}
𝑂1 = N × {Steps, Left, Right, Medical Equipment]}

At L3, the AI guide instructs the rescuer at the highest level of
prerequisite knowledge. Examples of Level 3 instruction tuples are
(Go to, Room 109) or (Triage, Blue Victim). The instructor can only
tell the rescuer to go to a particular room, whose name and location
the rescuer must know. While this complexity level requires greater
prior knowledge, it trades off cognitive load, by being brief and
more straightforward for knowledgeable rescuers.

Figure 2: Map of 2D building blueprint, containing a subset
of room names.

L2 instructions require minimal knowledge. Level 2 commands
require the rescuer to have baseline knowledge of how doors and
intersections appear in the environment. Examples include (Proceed
to, 2nd door on right), and (Turn, Right).

Examples of Level 1 instructions are (Walk forward, 5 Steps),
(Turn, Right), and (Utilize, Medical Equipment). This command type
requires no knowledge of the building blueprint, because the in-
struction corpus is restricted to motion primitives. Each instruction
level can be generated from a transformation of a neighboring level,
that either applies higher or lower complexity.

3 INTERACTION FRAMEWORK
In this section, we present a two-step, EVALUATE-and-ADAPT
interaction framework for adaptive coaching based on complexity
level switching (see Figure 3), similar to [14]. The human rescuer’s
role is an instruction-following task, which ensures compliance
to the provided instructions. At time 𝑡 = 0, the AI guide gives
the rescuer (human) an instruction at a default complexity level,
𝛽0. The instruction directs the rescuer to the first victim. In the
EVALUATE step, the instructor observes the actions of the rescuer
and predicts whether they are headed to the correct victim (goal).
Assuming the human complies with all instructions, goal predic-
tion serves as a proxy for comprehension at the current complexity
level 𝛽0, because failing to reach a goal must thus be attributed
to inability. The instructor computes the probability that the res-
cuer is headed to the intended victim 𝑔intended given their current
trajectory P(𝑔intended |Trajectory).

Figure 3: Instruction loop. First, the AI performs an EVALU-
ATE step, followed by an ADAPT step, generating the next
instruction at the appropriate level for the human rescuer.
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A high P(𝑔intended |Trajectory) indicates the human understands
the instructions provided at the current level, and vice versa.

In the ADAPT step, the AI adjusts its model of the rescuer. The
instructor makes a threshold-based decision on whether or not the
level of instruction must change in order to better fit the human
rescuer’s comprehension and knowledge. If P(𝑔intended |Trajectory)
falls below some threshold, indicating the rescuer is unable to un-
derstand instructions at the current complexity, the AI instructor
decreases the rescuer’s assigned level for the next time step, 𝛽𝑡+1,
and thus provides a more basic instruction in the next interaction.
A high P(𝑔intended |Trajectory) value indicates the rescuer under-
stands the instruction complexity level well and is headed to the
correct victim. The instructor may increase the rescuer’s 𝛽𝑡+1 pa-
rameter, provide a higher-level next instruction, and EVALUATE
again. This process occurs for as many interactions as necessary to
guide the rescuer throughout the episode.

3.1 EVALUATE Step
In the EVALUATE step at time 𝑡 , the instructor’s objective is to
determine whether or not the human rescuer understands the in-
structions provided at the current assigned complexity level 𝛽𝑡 .
Identifying situations where the rescuer lacks the ability or prereq-
uisite knowledge needed to follow particular directions informs
the AI to adjust the complexity of instruction accordingly. Victim
goal prediction [2, 8, 16] serves as a proxy and measure for human
understanding.

3.1.1 Bayesian Goal Prediction. The set of goals is the set of victims
𝐺 = {𝑔1, ..., 𝑔20}. We aim to compute P(𝑔∗ |b0:𝑡 ) the probability that
the rescuer is headed to the instructed victim 𝑔∗ given their current
trajectory b0:𝑡 = {𝑥1, ..., 𝑥𝑡 }, where 𝑥𝑡 is the position at time 𝑡 . We
utilize the Bayesian formulation:

P(𝑔∗ |b0:𝑡 ) = P(𝑔∗ |𝑥0, ..., 𝑥𝑡 ) =
P(𝑥0, ..., 𝑥𝑡 |𝑔∗)P(𝑔∗)
P(𝑥0, ..., 𝑥𝑡 )

. (1)

We define a term: the initial compliance prior P(𝑔∗), parameter-
ized by 𝛼 , to be a static prior that represents the baseline compliance
of the human rescuer. Given the rescuer has not taken any steps
after being given an instruction, P(𝑔∗) is the probability that the res-
cuer is headed towards the intended goal 𝑔∗. P(𝑔∗) is a static prior
because the instructor model must maintain over long trajectories
the notion that the rescuer is still most likely to go to the victim
(goal) that he or she was instructed to go to. P(𝑔∗;𝛼) = 𝛼 . Let 𝐺𝑅

be the set of victims remaining to be saved. For the other remaining
non-intended victims {𝑔𝑖 ∈ 𝐺𝑅 : 𝑔𝑖 ≠ 𝑔∗}, P(𝑔𝑖 ;𝛼) = 1−𝛼

𝑁−1 .
To get the likelihood of the trajectory b0:𝑡 given goal 𝑔∗, (data

given model), we assume Markov independence of position at each
state. To compute P(𝑥0, ..., 𝑥𝑡 ), marginalize over the victims remain-
ing.

P(𝑔∗ |b0:𝑡 ) =
P(𝑥𝑡 |𝑔∗, 𝑥𝑡−1)P(𝑔∗;𝛼)P(𝑔∗ |b0:𝑡−1)∑

𝑔𝑗 ∈𝐺𝑅
P(𝑥𝑡 |𝑔 𝑗 , 𝑥𝑡−1)P(𝑔 𝑗 ;𝛼)P(𝑔 𝑗 |b0:𝑡−1)

(2)

Equation 2 thus serves as the inference update. P(𝑥0 |𝑔∗) = 1,
because the starting position is guaranteed to be visited. In order
to compute the probability of taking each step P(𝑥𝑖 |𝑥𝑖−1, 𝑔 𝑗 ), we
run for each remaining victim, a flood-fill over the entire map
originating from the victim locations. The flood-fill value for victim

𝑔 𝑗 informs us of the proximity in number-of-steps-remaining to
reach victim 𝑔 𝑗 from all map coordinate locations (𝑥,𝑦). When the
rescuer takes a single step, decreasing 𝑔∗ flood-fill values indicate
approaching the intended victim, and increasing values indicate
moving away from the victim.

It is only fair to allow the rescuer to make mistakes when travers-
ing an uncertain environment. The rescuer error allowance is de-
fined by 𝜖 . 𝜖 is a step-wise function of proximity to goal, where
𝐷 (𝑥𝑡 , 𝑔∗) is the taxicab distance from current position to instructed
victim. The closer the rescuer gets to the victim, the more likely
it becomes that the rescuer is headed directly towards the precise
location of the victim. Hyperparameter 𝜖 values can be adjusted
based on the task. For the search-and-rescue, we tune 𝜖 and set the
below thresholds based on sample trials.

𝜖 =

{
0.1, if 𝐷 (𝑥𝑡 , 𝑔∗) ≤ 10
0.4 otherwise

(3)

The probability that the rescuer takes one step away from the
instructed victim P(𝑥𝑡 |𝑥𝑡−1, 𝑔∗) = 𝜖 , since this would occur if
the rescuer makes a single-step mistake with respect to the 𝑔∗.
P(𝑥𝑡 |𝑥𝑡−1, 𝑔∗) = 1 − 𝜖 if the rescuer moves closer to the victim.
P(𝑥𝑡 |𝑥𝑡−1, 𝑔∗) is normalized over the probabilities of each possible
step from position 𝑥𝑡−1. Let 𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (𝑥𝑡−1) be the set of 1-step
reachable locations from 𝑥𝑡−1, and 𝐶𝑔𝑗 (𝑥𝑡−1) is the distance be-
tween position 𝑥𝑡−1 and victim 𝑔 𝑗 . The one-step likelihood given
goal 𝑔 𝑗 becomes

P(𝑥𝑡 |𝑥𝑡−1, 𝑔 𝑗 ) =
{
1−𝜖
𝑍

, if 𝐶 (𝑥𝑡 ) ≤ 𝐶 (𝑥𝑡−1)
𝜖
𝑍
, if 𝐶 (𝑥𝑡 ) > 𝐶 (𝑥𝑡−1)

(4)

𝑍 =
∑

𝑥𝑖 ∈𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (𝑥𝑡−1)
P(𝑥𝑖 |𝑥𝑡−1, 𝑔 𝑗 )

3.2 ADAPT Step
In order to generate navigation instructions to all victims under the
4-minute time constraint, the AI guide first plans a path using 𝐴∗
from the rescuer’s starting location to the locations of all victims,
constrained by the expiration times of each victim type.

In the ADAPT step, the threshold-based decision adapts instruc-
tion to the rescuer’s level of understanding. Define two hyperpa-
rameters: a threshold 𝜏𝐺 for leveling-up, and a threshold 𝜏𝐵 for
leveling-down. If P(𝑔∗ |b0:𝑡 ) > 𝜏𝐺 , the instructor increments the
level of instruction. If P(𝑔∗ |b0:𝑡 ) < 𝜏𝐵 , then decrement the instruc-
tion level. Otherwise, the rescuer level remains as is (see Figure
4). Algorithm 1 defines the interaction loop algorithm for adaptive
navigation assistance (ANA).

Figure 4: Threshold-based level switching mechanism



Michelle Zhao, Reid Simmons, and Henny Admoni

Algorithm 1: Adaptive Navigation Assistance (ANA)
Result: {L𝑡+1}

1 b0:𝑡 , 𝑔∗𝑡 ,𝐶𝑔∗𝑡 ,L𝑡 ← Input: trajectory, current goal, floodfill
values of current goal, current level

2 𝜏𝐵, 𝜏𝐺 ← Input: Level-Decrement threshold,
Level-Increment threshold

3 𝐿𝑒𝑣𝑒𝑙𝑠 = {L1,L2,L3}
4 Compute P(𝑔∗𝑡 |b0:𝑡 )
5 if P(𝑔∗𝑡 |b0:𝑡 ) < 𝜏𝐵 then
6 L𝑡+1 ←𝑚𝑎𝑥 (1,L𝑡 − 1)
7 end
8 if P(𝑔∗𝑡 |b0:𝑡 ) > 𝜏𝐺 then
9 L𝑡+1 ←𝑚𝑖𝑛(3,L𝑡 + 1)

10 else
11 L𝑡+1 ← L𝑡
12 end

4 EXPERIMENTAL DESIGN
We design a user study to answer the following questions

Q1: How does a rescuer’s preparedness (amount of pretraining
and prerequisite knowledge) for a task affect their prefer-
ence and performance when instructed at different levels of
complexity?

Q2: What effect does dynamic versus static assistance have on
rescuer performance and preference?

4.1 Study Design
To investigate these questions, we define a mixed-design study,
where Q1 leverages a between-subjects design, and Q2 uses a
within-subjects comparison. The between-subjects independent
variable, denoted 𝐼𝑉1, is preparedness level. The within-subjects
independent variable, 𝐼𝑉2, is adaptivity of instructor.

4.1.1 Procedure. Participants will play a 2D gridworld search-and-
rescue game for two rounds. One of the trials will be guided by a
static instructor, and the other will be with an adaptive instructor.
The static instructor can only provide instruction at a fixed com-
plexity level, which will be selected randomly from the 3 levels
{L1,L2,L3}. The adaptive instructor will use ANA to dynamically
adjust the instruction complexity to the knowledge and understand-
ing of the human rescuer. Each trial is divided into three phases:
Train, Pre-test, and Test (see Figure 5).

Training Phase In the pretraining phase, the human participant
is provided a limited time frame to memorize the map and room
names to the best of his/her ability. The rescuer is assigned to a
pretraining group drawn from the set [1 minute, 5 minutes], in order
to ensure a wide, near-uniform spread of participant preparedness.
The pretraining amount will be held constant over both trials.

Pre-Test Phase In the pre-test phase, the participant is quizzed on
the room names. Their score on this room-labeling pre-test defines
their rescuer-preparedness metric.

Test Phase In the test phase, the participant plays the game to
rescue as many victims as possible while following the directions
of an AI instructor.

Figure 5: User study design.

The instructor order is randomized to counterbalance training
effects. After participants have worked with both instructors, they
will be asked a series of questions comparing the two, using Likert
and interval scale ratings.

4.2 Hypotheses
We anticipate positive correlation between preparedness and pre-
ferred complexity level.We also predict an partiality for the adaptive
over static coach.

H1: Higher participant preparedness will induce preference for
higher levels of instruction complexity.

H2: Participants with high preparedness scores will perform bet-
ter at higher levels of complexity.

H3: Participants will prefer the adaptive instruction over static
instruction, especially at low preparedness levels.

5 CONCLUSION
In this work, we demonstrate an interactive EVALUATE-and-ADAPT
strategy for adaptive coaching for human learners. The adaptive
strategy generalizes to other tasks in addition to navigation. For
example, performing emergency medical procedures is complex,
and very difficult for nonprofessional bystanders. An AI instruc-
tor for such situations must perform complexity level adjustment
on-the-fly for first-responders of various skill levels.

One important future direction of this work is developing mod-
ular adaptive advising systems. The interaction framework we
present manipulates information complexity. In future work, we
plan to investigate abstraction levels across further aspects of learn-
ing in team tasks. This system can be employed in more complex
teaching systems, and extended to manipulate other variables of
machine social intelligence.
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