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ABSTRACT
As affective robots become integral in human life, these agents
must be able to fairly evaluate human affective expressions without
discriminating against specific demographic groups. Identifying
bias in Machine Learning (ML) systems as a critical problem, dif-
ferent approaches have been proposed to mitigate such biases in
the models both at data and algorithmic levels. In this work, we
propose Continual Learning (CL) as an effective strategy to enhance
fairness in Facial Expression Recognition (FER) systems, guarding
against biases arising from imbalances in data distributions. We
compare different state-of-the-art bias mitigation approaches with
CL-based strategies for fairness on expression recognition and Ac-
tion Unit (AU) detection tasks using popular benchmarks for each;
RAF-DB and BP4D. Our experiments show that CL-based meth-
ods, on average, outperform popular bias mitigation techniques,
strengthening the need for further investigation into CL for the
development of fairer FER algorithms.

1 INTRODUCTION
From security and surveillance systems [16], monitoring emotional
and mental wellbeing [3] and assisting in medical interventions [4]
to law enforcement [21], robots are becoming closely embedded in
our society, making ‘smart’ decisions about several critical aspects
of our lives [36]. Therefore, it is crucial that they make fair and
unbiased decisions [21] in order to avoid potentially catastrophic
consequences that adversely affect individuals [17].

Fair and unbiased analysis and interpretation of human affec-
tive behaviours are among the factors that can contribute to the
realisation of effective long-term Human-Robot Interaction (HRI).
Successful long-term HRI can be used to provide physical and emo-
tional support to the users, engaging them in a variety of applica-
tion domains that require personalised human–robot interaction,
including healthcare, education and entertainment [9].

Facial Expression Recognition (FER) algorithms (see [25, 30, 38]
for a detailed survey) aim to analyse human facial expressions either
by encoding facial muscle activity as Facial AU [14] or determin-
ing the emotional state being expressed by an individual [12, 13].
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Analysing large datasets of human faces, annotated for the ex-
pressions represented in the images, training FER models becomes
heavily data-dependent andmay be prone to biases originating from
imbalances in the data distribution with respect to attributes like
gender, race, age or skin-color, implicitly encoded in the data [26].
These imbalances may result in the models learning to associate
such confounding attributes with the task of FER. With affective
robots increasingly becoming an integral part of daily human life,
‘bias’ in FER models, as described above, may result in unfavourable
and prejudiced consequences for many under-represented groups.

Most recent and popular FER datasets provide annotations for dif-
ferent demographic attributes, along with affective labels, allowing
for fairer FER models using these annotations explicitly [26]. This
can be done at the pre-processing level [46] either modifying the data
distribution in favour of underrepresented groups while training by
strategically sampling [15] the data, or at in-processing level [46] by
adapting the model architecture or the training process to handle
these imbalances. Some methods achieve this by either forcing the
model to explicitly learn domain-specific information such that
this can be discounted from the model’s learning later [11] or by
discounting domain-specific information by omitting these features
from the learnt representations [44]. Other popular strategies in-
clude using data-augmentation strategies to synthetically generate
additional data for the under-represented groups [1, 7, 8, 18] to bal-
ance training data distribution or weighting model prediction loss
differently for the different domain attributes. A weighting factor
may be applied to the loss computation based on the occurrence
rate for the different classes or domains [10, 15, 40] penalising mis-
classifications for under-represented groups more than others. The
underpinning principle behind these methods, however, remains
the same, focusing on balancing data distributions or learning to
adapt to the imbalances by adjusting the learning algorithm.

Continual Learning (CL) approaches [24, 31] focus on this very
challenge of managing shifts in data distributions by continually
learning and adapting to novel information without forgetting
previously learned information. As agents interact with their envi-
ronments and gather more information about specific tasks, they
need to be able to remember previously learnt tasks while acquiring
new skills. CL may allow them to balance learning across different
domains or tasks as well as being robust against the changes in the
data distributions. In particular, Domain-Incremental CL [43] deals
with managing shifts in the input data distributions, while the task
to be learnt remains the same. This can be considered analogous to
managing affective interactions with users belonging to different
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(a) Baseline CNN Architecture implementing a ResNet-based architecture.
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(b) DDC Architecture implementing an N×M Classi-
fier.
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(c) DIC Architecture with separate classifiers for each
domain.
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(d) DA Architecture [45] separating task-
specific and domain-specific features.

Figure 1: Architectures for (a) the Baseline CNN, (b) the Domain Discriminative Classifier (DDC) [44], (c) the Domain Indepen-
dent Classifier (DIC) [44], and (d) the Disentangled Approach (DA) [45].

domain groups of gender (male or female) or race (black, white or
asian), trying to analyse their expressions.

We propose the use of CL algorithms, benefiting from their
ability for lifelong learning, to develop fairer FER models for af-
fective robots that can balance learning with respect to different
attributes of gender and race. In particular, we formulate expres-
sion recognition and AU detection, across these different domain
attributes, as continual learning problems. We compare several pop-
ular regularisation-based CL approaches with state-of-the-art bias
mitigationmethods by splitting the data into different domain labels
for each attribute; male and female for gender, White/Caucasian,
Black/African-American, Asian and Latino for race, provided by the
RAF-DB and BP4D datasets. CL-based approaches are, on average,
seen to outperform other bias mitigation strategies both in terms
of accuracy as well as fairness for both the RAF-DB dataset (across
gender and race splits) and the BP4D dataset (for race splits).

2 METHODOLOGY
To investigate the problem of bias in FER systems, we need to
understand which domain attributes dominate the data and how an
algorithm performs with respect to these attributes. In this section,
we present the problem formulation, the learning scenario as well
as briefly describe the different non-CL and CL-based methods
compared in this work.

2.1 Problem Formation
As our objective is to evaluate bias in FER with respect to different
domain attributes, we focus on evaluating model performances on
datasets split across gender and race domain attributes on two differ-
ent facial analysis tasks: Expression recognition and AU detection.
Thus, given a set of samples 𝑥𝑖 , ground truth labels 𝑦𝑖 and domain
labels 𝑑𝑖 we are evaluate the performance of the modelA(𝑥𝑖 |𝑦𝑖 , 𝑑𝑖 )
across the different domain labels.

We implement a ResNet-based Convolutional Neural Network
(CNN) [20] architecture composed of 4 conv blocks each of which
consists of 2 convolutional layers, a max pooling layer, with dropout

and batch normalisation. The output of the last conv block is at-
tached to a three-layered Multi-layered Perceptron (MLP) with a
classifier output. ReLU activation is used after all conv and dense
layers. We use the same CNN architecture as the basis for all the
approaches, except for the Disentangled Approach (DA) [45] where
we take the results from the original paper.

2.1.1 Baseline Model. As our baseline approach, above described
CNN model (see Fig. 1) is incrementally trained on the domain-
based splits of the dataset and model performance is reported after
the training for each split. This method is commonly referred to as
finetuning [2].

2.1.2 Offline Training. As a second baseline, we train the above-
described baseline CNN model with all the training data, off-line,
at once but report its performance scores individually on domain-
specific test-splits.

2.2 Non-CL-based Bias Mitigation Strategies
In this section, we describe four popular and state-of-the-art bias
mitigation methods, grouped under ‘non-CL-based’ approaches, to
be compared with CL-based solutions.

2.2.1 DomainDiscriminative Classifier (DDC): A popular ap-
proach for bias mitigation in ML systems is referred to as “fairness-
through-awareness” [11] where the domain information is explicitly
learnt and encoded in feature representations making the model
more ‘aware’ of the different domain labels in order to discriminate
between each of them. The model implements a 𝑁 ×𝑀-way classi-
fier [44] where 𝑁 is the number of domains and𝑀 is the number
of classes to be learned per domain (see Fig 1).

2.2.2 Domain Independent Classifier (DIC): One of the con-
cerns with DDC-based models is that they may learn decision
boundaries for the same class across different domains, that is, even
if the model predicts the correct class, it may be penalised unneces-
sarily due to differences in domain-specific features.Wang et al. [44]
propose a different approach by training separate classifiers for each
of the domain while sharing the same top-level architectures. This,
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with the different model heads (see Fig 1), it can learn to solve the
task for each domain group individually and independently.

2.2.3 Strategic Sampling (SS): The simplest approach to miti-
gate bias arising from skewed data distributions, without changing
model architecture, is to balance the effect of each domain distribu-
tion by strategically sample data [15] for each domain-classmapping.
This can be achieved by increasing the sampling frequency of the
images from under-represented distributions or equivalently, for
each domain 𝑑𝑖 assigning a loss weight𝑤𝑖 inversely proportional
to the rate of occurrence of sample for that domain. We follow the
weighted-loss approach for strategically sampling data.

2.2.4 The Disentangled Approach (DA): Xu et al. [45] imple-
ment the Disentangled Approach (DA) [28] that aims to mitigate
bias across sensitive domains by making sure that the feature repre-
sentations learnt by the model do not contain any domain-specific
information. The network is split into two parts with a shared
ResNet-based feature extraction sub-network. The first part focuses
on facial affect analysis, while the other part consists of separate
branches for each domain, designed to suppress domain-specific
information. For our experiments, the results for the FER tasks are
taken from the original paper [45].

2.3 Continual Learning Approaches
In this work, we primarily explore regularisation-based CL ap-
proaches, under Domain Incremental Learning (Domain-IL) set-
tings, as these can be implemented with the least additional com-
putational and memory overhead. For a comparison with rehearsal-
based methods, we also implement a simple Naive Rehearsal (NR)
[22] method that physically stores previously encountered data
samples for rehearsal. Other CL-based methods that improve model
performance using a generative or probabilistic model to simulate
pseudo-samples for previously seen tasks [8, 35, 41] or by dynami-
cally expanding model architectures by adding dedicated neurons
(Growing Neural Networks [8, 32]) or neural layers (Progressive
Networks [37]) sensitive to specific domains or tasks are omitted
from this evaluation as they require additional memory and compu-
tational resources to be allocated, giving them an unfair advantage
over non-CL-based bias mitigation methods. For our experiments,
the models need to learn AU detection and FER tasks as the input
data distributions change with respect to domain-specific attributes
of gender and race. We use the same baseline CNN model and apply
the learning protocol as described by the following approaches:

2.3.1 Elastic Weight Consolidation (EWC): As proposed by
Kirkpatrick et al. [23], the EWC approach introduces a quadratic
penalty determined by the relevance of each parameter of the model
with respect to old and new tasks, penalising updates in parameters
relevant for old tasks, in order to avoid forgetting previously learnt
information. The importance of different model parameters are
determined using a Fisher Information Matrix, updating the loss
function.

2.3.2 EWC-Online: A disadvantage for the EWC method is that,
as the number of tasks increase, the number of quadratic terms for
regularisation grows. To handle this, Schwarz et al. [39] proposed
a modification to EWC where instead of many quadratic terms, a

single quadratic penalty is applied, determined by a running sum
of the Fischer Information Matrices of the previous tasks.

2.3.3 Synaptic Intelligence (SI): Similar to EWC, the SI approach
also penalises changes to relevant weight parameters (synapses)
such that new tasks can be learnt without forgetting the old [47]. To
avoid forgetting, importance for solving a learned task is computed
for each parameter and changes in most important parameters are
discouraged.

2.3.4 MemoryAware Synapses (MAS): MemoryAware Synapses
(MAS) also tries to alleviate forgetting by calculating the impor-
tance of each parameter by looking at the sensitivity of the output
function instead of the loss [2]. Parameters that have the most im-
pact on model predictions are given a high importance and changes
to these parameters are penalised. However, unlike EWC and SI,
parameter importance is calculated in an unsupervised manner
with using only unlabelled data.

2.3.5 Naive Rehearsal (NR): Inspired by the model used in [22],
we implement a (naive) rehearsal-based approach that implements
a small replay-buffer to randomly store a fraction of previous seen
data. This old data along with the new data is used to create mini-
batches using equal number of samples from both old and new data
and used to train the model ensuring that old knowledge is not
overwritten by new data.

3 EXPERIMENTATION AND RESULTS
3.1 Set-up
For our experiments, we conduct two separate evaluations, com-
paring the different bias mitigation approaches (see Section 2) for
facial expression recognition and AU detection tasks with the RAF-
DB [27] and BP4D [48] datasets, respectively. Each approach is
compared in terms of the Fairness Scores achieved, both with and
without data-augmentation. All evaluations are repeated 3 times
and results are averaged across the repetitions, except for DAwhere
the results are taking from the original paper.

3.2 Fairness Measure
To compare the different approaches for their fairness with respect
to model performance (in this case,Accuracy) for different attributes
of gender and race, we use the ‘equal opportunity’ definition of
fairness, as proposed by Hardt et al. [19].

Let x, y, ŷ be the variables denoting input, ground truth label
and the predicted label, respectively, 𝑠 ∈ 𝑆𝑖 be the sensitive (do-
main) attribute (for example, (𝑆𝑖 = {male, female}), 𝑓 be a function
computing the accuracy score for a given sensitive attribute 𝑠 and
𝑑 be the dominant attribute which has the highest accuracy score,
then the Fairness Measure F ∈ [0, 1] of a model is defined as the
largest accuracy gap among all sensitive attributes computed as
the minimum of the ratios of the accuracy scores of each sensitive
attribute with respect to the dominant attribute.

F = min( 𝑓 (ŷ, y, 𝑠0, x)
𝑓 (ŷ, y, 𝑑, x) , ...,

𝑓 (ŷ, y, 𝑠𝑛, x)
𝑓 (ŷ, y, 𝑑, x) ) (1)
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Table 1: Experiment 1: Fairness Scores across Gender and
Race for the RAF-DB Dataset. Bold values denote best while
[bracketed] denote second-best values for each column.

Method W/O Data-Augmentation W/ Data-Augmentation

Gender Race Gender Race

Baseline 0.834 0.943 0.816 0.937
Offline 0.944 0.925 0.954 0.974

Non-CL-based Bias Mitigation Methods

DDC [44] 0.968 0.985 0.961 0.976
DIC [44] 0.938 0.989 0.962 0.965
SS [15] 0.955 0.961 0.954 0.975
DA [45] 0.975 0.858 [0.997] 0.919

Continual Learning Methods

EWC [23] 0.972 0.987 0.983 0.990
EWC-Online [39] 0.970 0.987 0.974 0.990

SI [47] 0.990 0.996 0.999 0.996
MAS [2] [0.980] [0.990] 0.990 [0.994]
NR [22] 0.928 0.974 0.923 0.974

3.3 Experiment 1: Facial Expression
Recognition

To investigate the applicability of CL-based methods as ‘fair’ FER
systems, we train and test the approaches described in Section 2 on
the RAF-DB dataset and compare their performance (both without
and with data augmentation) on learning to correctly categorise the
7 expression classes, namely, surprise, sadness, happiness, fear, anger,
disgust and neutral, with respect to 2 different domain groups; gen-
der (Male, Female) and race (Caucasian, African-American, Asian).
The different approaches are trained with samples belonging to one
domain-split at a time, actively trying to preserve the knowledge
from previously seen splits while learning to classify samples for
the new domain-split. As a result, CL approaches, on average, out-
perform all other methods on their Fairness Scores with respect
to both gender and race domains with SI yielding the best results
both with and without data-augmentation (see Table 1). In addition,
although data-augmentation has an overall positive effect on model
accuracy for all approaches, no significant shift is witnessed in
model fairness scores.

Furthermore, for the non-CL-based methods, except for DA, com-
plete knowledge of the domain-groupings is required apriori in
order to design the architectures of the models, limiting their real-
world applicability. For CL-based methods, however, learning can
be adapted to new domains on-the-fly as the models are designed
to be sensitive to random and sudden changes in data distributions
encountering samples from different domain groups over time.

3.4 Experiment 2: Action Unit Detection
Action Unit (AU) detection poses a multi-label classification prob-
lem where the models need to predict multiple AUs activated in a
given sample. As in the case of Experiment 1, we report and compare
the different bias CL-based and non-CL-based methods on the BP4D
dataset with respect to their average Fairness Scores across 12 AUs,
individually for gender and race domain-splits. We see that even
though the CL-based methods are able to achieve highest individual
accuracy scores for most of the gender and race groups, this comes
at the cost of balancing learning across the different attributes. For
the gender- splits, the Disentangled Approach (DA) [45] achieves
the highest fairness scores, despite performing moderately in terms

Table 2: Experiment 2: Fairness Scores across Gender and
Race for the BP4D Dataset. Bold values denote best while
[bracketed] denote second-best values for each column.

Method W/O Data-Augmentation W/ Data-Augmentation

Gender Race Gender Race

Baseline 0.962 0.855 0.941 0.858
Offline 0.984 0.878 [0.994] 0.901

Non-CL-based Bias Mitigation Approaches

DDC [44] [0.990] 0.920 0.991 0.924
DIC [44] 0.979 0.925 0.985 0.922
SS [15] 0.977 0.920 0.983 0.919
DA [45] 0.994 [0.954] 0.995 [0.962]

Continual Learning Approaches

EWC [23] 0.981 0.949 0.992 0.943
EWC-Online [39] 0.976 0.937 [0.994] 0.957

SI [47] 0.986 0.946 0.965 0.954
MAS [2] 0.966 0.920 0.967 0.909
NR [22] 0.983 0.966 0.954 0.974

of accuracy on individual splits (see Table 2). In the case of race
splits, we see that even though the NR approach achieves the high-
est fairness cores, this is owed to the memory-intensive rehearsal
mechanism that physically stores and replays samples from pre-
viously seen domains to retain model performance. Even though
the regularisation-based approaches target accuracy and trade-off
fairness in the process, they still perform better than most non-CL-
based methods. On the contrary, for the non-CL methods we see
that more importance is given to fairness than individual accuracy
with DA achieving consistently high fairness scores.

4 CONCLUSION AND FUTUREWORK
In this work, we focused on the problem of bias in facial analysis
tasks and proposed a novel application of continual learning as a
bias mitigation strategy for FER systems. We highlight how using
CL can help develop fairer expression recognition and AU detection
algorithms with our experiments with popular benchmark datasets;
RAF-DB for expression recognition and BP4D for AU detection
showcasing the superlative performance of CL methods at han-
dling imbalances in data distributions with respect to demographic
attributes of gender and race. In comparison with state-of-the-art
bias mitigation approaches, these methods are able to balance learn-
ing across different domains, not only achieving high accuracy
scores but also maintaining fairness across the different splits. Yet,
in our experiments we primarily focus on regularisation-based CL
methods due their efficacy and economic implementation for real-
world application. It will be interesting to contrast these methods
to other resource-hungry yet, improved algorithms [29, 34] that are
able to better handle long-term retention of knowledge. Combining
regularisation-based model adaptation with latent replay strate-
gies [33] may prove helpful in implementing fairer facial analysis
systems for long-term HRI.

Furthermore, future work for us also entails conducting long-
term HRI studies, comparing CL vs. non-CL-based methods, by
embedding these models onto a humanoid robot. Implementing
long-term social interactions with under-represented population
groups such as children [42], ethnic and racial minorities [6] and the
elderly [5] can help evaluate how CL-based FER systems respond
to users from different demographics.
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