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ABSTRACT
Shared autonomy enables robots to infer user intent and assist
in accomplishing it. But when the user wants to do a new task
that the robot does not know about, shared autonomy will hinder
their performance by attempting to assist them with something
that is not their intent. Our key idea is that the robot can detect
when its repertoire of intents is insufficient to explain the user’s
input, and give them back control. This then enables the robot to
observe unhindered task execution, learn the new intent behind
it, and add it to this repertoire. We demonstrate with both a case
study and a user study that our proposed method maintains good
performance when the human’s intent is in the robot’s repertoire,
outperforms prior shared autonomy approaches when it isn’t, and
successfully learns new skills, enabling efficient lifelong learning
for confidence-based shared autonomy.
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1 INTRODUCTION
Shared autonomy [1, 2, 5, 7–9, 13, 17–19, 24] enables robots to assist
human operators to more effectively accomplish what they want.
Rather than directly executing the human’s control input, a typical
framework for shared autonomy has the robot estimate the human’s
intent and execute controls that help achieve it [8, 15, 20, 23, 24].

These methods perform well when the robot has access to a
set of possible intents the human might have, e.g. the objects the
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Figure 1: We propose an approach for lifelong shared auton-
omy that enables a robot to detect when its set of known
human intents is insufficient to explain the current human
behavior. Rather than trying to assist for the wrong intent,
the robot learns from novel teleoperations to learn a model
of the new intent, allowing for lifelong confidence-based as-
sistance.

human might want to reach, or the buttons they might want to
push [8, 15]. But in reality, users of these systems will inevitably
want to perform tasks that are outside the repertoire of known
intents—they might want to reach for a goal the robot does not
know about, or perform a totally new task, like pouring their cup of
water into the sink. This presents a three-fold challenge for shared
autonomy. First, the robot will be unable to help with something it
does not know about. Second, and perhaps more importantly, it will
attempt to assist with whatever wrong intent it infers, interfering
with what the user is trying to do and hindering their performance.
This happens when the robot plans in expectation [15], and, as
our experiments will demonstrate, it happens even when the robot
arbitrates the amount of assistance based on its confidence in the
most likely goal [8]. Third, the 100th time the person attempts the
new task, it will remains just as difficult as the first time.

Our key idea is that robots should detect that the user is trying
something new and give them control. This then presents an oppor-
tunity for the robot to observe the new executed trajectory, learn
the underlying intent that explains it, and add it to its repertoire so
that it can infer and assist for it in the future.

To achieve this, we need two ingredients: 1) a way for the robot to
detect its repertoire of intents is insufficient, and 2) a representation
of intents that enables learning new tasks throughout its lifetime,
adding them to its repertoire, and being able to run inference over
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them in a unified way with the initial, known intents. For the latter,
we use cost functions as a way to unify goals and general skills like
pouring into the same representation. This then enables the former:
when the human acts too suboptimally for any of the known cost
functions, it suggests that the robot does not have the right set of
costs. autonomy new intent, which the robot uses to learn a cost
function via Inverse Reinforcement Learning (IRL) [10] and add it to
its set of intents. This enables lifelong shared autonomy, where the
robot helps when it is confident in what the user wants and learns
new intents when it detects that the human is doing something
novel, so that it can assist with that intent in the future.

2 CONFIDENCE-AWARE SHARED
AUTONOMY

We consider a human teleoperating a dexterous robotic manipulator
to perform everyday manipulation tasks. The robot’s goal is to
assist the person in accomplishing their desired skill by augmenting
or changing their input. While the robot is armed with a set of
predefined skills the person might want to carry out, the human’s
desired motion might not be captured by any of them. We propose
that since the robot might not understand the person’s intentions,
it should reason about how confident it is in its predictions in order
to avoid assisting for the wrong skill.

2.1 Preliminaries
Formally, let 𝑥 ∈ X be the continuous robot state (e.g. joint angles),
and 𝑢 ∈ U the continuous robot action (e.g. joint velocity). The
user controls their desired robot configuration by providing con-
tinuous inputs 𝑎 ∈ A via an interface (e.g. GUI, joystick, keyboard
commands, etc). These inputs are mapped to robot actions through
a direct teleoperation function T : A → U. Define a person’s tra-
jectory up until time 𝑡 as the sequence 𝜉0→𝑡 = (𝑥0, 𝑎0, . . . , 𝑥𝑡 , 𝑎𝑡 ).

The robot is equipped with a set of known intents Θ, one of
which may represent the user’s desired motion. Each intent is pa-
rameterized by a cost function 𝐶𝜃 , which may be hand-engineered
or learned from demonstrations via IRL [21, 28]. Our shared auton-
omy system does not know the intent a priori, but infers it from the
human’s inputs. Given the user’s trajectory so far, 𝜉0→𝑡 , a common
strategy is to predict the user’s intent 𝜃 ∈ Θ, compute the optimal
action for moving accordingly, then augment the user’s original
input with it [8]. However, what if none of the intents match the
human’s input? We introduce a shared autonomy formalism where
the robot reasons about its confidence in its current set of intents’
ability to explain the person’s input, and uses that confidence to
determine whether (and how much) to assist or whether to ask the
human to demonstrate the missing intent.

2.2 Intent Inference
To assist the person, the robot has to predict which of its known
tasks they are trying to carry out, if any. We assume the Boltzmann
nosily-rational decision model for the human teleoperation [3, 27]:

𝑃 (𝜉 | 𝜃, 𝛽) = 𝑒−𝛽𝐶𝜃 (𝜉)∫
𝜉
𝑒−𝛽𝐶𝜃 (𝜉)𝑑𝜉

, (1)

where the person chooses the trajectory 𝜉 proportional to its ex-
ponentiated cost 𝐶𝜃 . The parameter 𝛽 ∈ [0,∞) controls how much

the robot expects to observe human input consistent with the in-
tent 𝜃 . Typically, 𝛽 is fixed, recovering the Maximum Entropy IRL
observation model [28]. Inspired by work on confidence-aware
human-robot interaction [4, 11, 12], we instead reinterpret 𝛽 as a
measure of the robot’s situational confidence in its ability to explain
human data, given the known intents Θ, and we show how the
robot can estimate it in Sec. 2.3.

Given Eq. (1), if the cost 𝐶𝜃 of intent 𝜃 is additive along the
trajectory 𝜉 , we have that:

𝑃 (𝜉0→𝑡 | 𝜃, 𝛽) = 𝑒−𝛽𝐶𝜃 (𝜉0→𝑡 )

∫
𝜉𝑡→𝑇

𝑒−𝛽𝐶𝜃 (𝜉𝑡→𝑇 )∫
𝜉0→𝑇

𝑒−𝛽𝐶𝜃 (𝜉0→𝑇 )
, (2)

where 𝑇 is the duration of the episode. We follow [8] and approxi-
mate these integrals via Laplace’s method:

𝑃 (𝜉0→𝑡 | 𝜃, 𝛽) ≈ 𝑒−𝛽
(
𝐶𝜃 (𝜉0→𝑡 )+𝐶𝜃 (𝜉∗𝑡→𝑇

)−𝐶𝜃 (𝜉∗0→𝑇
)
)

×

√√(
𝛽

2𝜋

)𝑡𝑘 |∇2𝐶𝜃 (𝜉∗0→𝑇
) |

|∇2𝐶𝜃 (𝜉∗𝑡→𝑇
) |

, (3)

where 𝑘 is the action dimensionality, and the trajectories 𝜉∗0→𝑇
and

𝜉∗
𝑡→𝑇

are optimal with respect to𝐶𝜃 and can be computed with any
off-the-shelf trajectory optimizer1.

Now, given a tractable way to compute the likelihood of the
human input, the robot can obtain a posterior over intents:

𝑃 (𝜃 | 𝜉0→𝑡 , 𝛽) =
𝑃 (𝜉0→𝑡 | 𝜃, 𝛽)∑

𝜃 ′∈Θ 𝑃 (𝜉0→𝑡 |𝜃 ′, 𝛽)
, (4)

assuming 𝑃 (𝜃 | 𝛽) = 𝑃 (𝜃 ) and a uniform prior over intents.
Prior inference-based shared autonomy work [8, 15] typically

assumes 𝛽 = 1. We show that the robot should not be restricted by
such an assumption and it, in fact, benefits from estimating 𝛽 and
reinterpreting it as a confidence.

2.3 Confidence Estimation
In the Boltzmann model in Eq. (1), we see that 𝛽 determines the
variance of the distribution over human trajectories. When 𝛽 is
high, the distribution is peaked around those trajectories 𝜉 with the
lowest cost 𝐶𝜃 ; in contrast, a low 𝛽 makes all trajectories equally
likely. We can, thus, reinterpret 𝛽 to take a useful meaning in shared
autonomy: given an intent, 𝛽 controls how well that intent’s cost
explains the user’s input. A high 𝛽 for an intent 𝜃 indicates that
the intent’s cost explains the input well and is a good candidate for
assistance. A low 𝛽 on all intents suggests that the robot’s intent
set is insufficient for explaining the person’s trajectory.

We can thus estimate 𝛽 and use it for assistance. Using the like-
lihood function in Eq. (3), we write the 𝛽 posterior

𝑃 (𝛽 | 𝜉0→𝑡 , 𝜃 ) =
𝑃 (𝜉0→𝑡 | 𝜃, 𝛽)𝑃 (𝛽)∫
𝛽
𝑃 (𝜉0→𝑡 |𝜃, 𝛽)𝑃 (𝛽)𝑑𝛽

. (5)

If we assume a uniform prior 𝑃 (𝛽), we may compute an estimate of
the confidence parameter 𝛽 per intent 𝜃 via a maximum likelihood
estimate:

𝛽𝜃 = arg max
𝛽

𝑒−𝛽
(
𝐶𝜃 (𝜉0→𝑡 )+𝐶𝜃 (𝜉∗𝑡→𝑇

)−𝐶𝜃 (𝜉∗0→𝑇
)
) ( 𝛽

2𝜋

) 𝑡𝑘
2

, (6)

1We use TrajOpt [26], based on sequential quadratic programming.
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where we drop the Hessians since they don’t depend on 𝛽 . Setting
the derivative of the objective in Eq. (6) to zero and solving for 𝛽
yields the following estimate:

𝛽𝑀𝐿𝐸
𝜃

=
𝑡𝑘

2(𝐶𝜃 (𝜉0→𝑡 ) +𝐶𝜃 (𝜉∗𝑡→𝑇
) −𝐶𝜃 (𝜉∗0→𝑇

)) . (7)

The denominator in Equations 7 can be interpreted as the “sub-
optimality” of the observed partial trajectory 𝜉0→𝑡 compared to
the cost of the optimal trajectory for the particular 𝜃 , 𝐶𝜃 (𝜉∗0→𝑇

).
Note that 𝛽𝜃 is inversely proportional to the suboptimality divided
by the number of time steps 𝑡 that have passed. If this normalized
suboptimality is low for an intent 𝜃 , then the person is close to a
good trajectory for that intent and 𝛽𝜃 will be high. Thus, a high 𝛽𝜃
means that the person’s input is well-explained by that intent. On
the other hand, high suboptimality per time means the person is
far from good trajectories, so 𝜃 ’s cost model 𝐶𝜃 does not explain
the person’s trajectory and 𝛽𝜃 will be low.

2.4 Confidence-based Arbitration
Given a confidence estimate 𝛽𝜃 for every 𝜃 ∈ Θ, the robot can pre-
dict the most likely one 𝜃∗ = arg max𝜃 ∈Θ 𝑃 (𝜃 | 𝜉0→𝑡 , 𝛽𝜃 ) using Eq.
(4). From here, one natural style of assistance is “policy blending” [8].
First the robot computes an optimal trajectory under the most likely
intent, 𝜉∗ = arg min𝜉

∑
𝑥 ∈𝜉 𝐶

∗
𝜃
(𝑥), the first action of which is 𝑢∗.

Then the robot combines 𝑢∗ and T (𝑎𝑡 ) using a blending parameter
𝛼 ∈ [0, 1], resulting in the robot action 𝑢𝑡 = 𝛼T (𝑎𝑡 ) + (1 − 𝛼)𝑢∗.
We also refer to 𝛼 as the human’s control authority.

Prior work proposes different ways to arbitrate between the ro-
bot and human actions by choosing 𝛼 proportional to the robot’s
distance to the goal or to the probability of the most likely goal
[8]. However, when using the probability 𝑃 (𝜃∗ | 𝜉), 𝜃∗ might look
much better than the other intents, resulting in the robot wrongly
assisting for 𝜃∗. Distance-based arbitration ignores the full history
of the user’s input and can only accommodate simple intents. In-
stead, we propose that the robot should use its confidence in the
most likely intent, 𝛽𝜃 ∗ , estimated according to Sec. 2.3, to control
the strength of its arbitration:

𝑢𝑡 = min(1, 1/𝛽𝜃 ∗ )T (𝑎𝑡 ) + (1 −min(1, 1/𝛽𝜃 ∗ ))𝑢∗ (8)

When 𝛽𝜃 ∗ is high, i.e. the robot is confident that the predicted intent
𝜃∗ can explain the person’s input, 𝛼 is low, giving the robot more
influence through its action 𝑢∗. When 𝛽𝜃 ∗ is low, i.e. not even the
most likely intent explains the person’s input, 𝛼 increases, giving
the person’s action 𝑎𝑡 more authority.

2.5 Using Confidence for Lifelong Learning
Estimating 𝛽𝜃 offers the robot great flexibility in choosing how
strongly to assist the user. It also gives the robot a way to detect
when its set Θ is misspecified: if all estimated 𝛽𝜃 for 𝜃 ∈ Θ are
below a threshold 𝜖 , the robot is missing the person’s intent. Once
the robot has identified that its intent set is misspecified, it should
ask the person to teach it. We represent the missing intent 𝜃𝜙 as
a neural network cost parameterized by 𝜙 and learn it via deep
maximum entropy IRL [10] (detailed in Appendix A).

Once we have a new intent 𝜃𝜙 , the robot updates its intent set
Θ← Θ ∪ 𝜃𝜙 . The next time the person needs assistance, the robot

can perform confidence estimation, goal inference, and arbitration
as before, using the new library of intents. Learned rewards fit nat-
urally into our framework, allowing for a simple way to compare
against the known intents. However, one could imagine adapting
our method to the many other ways to learn an intent, from imita-
tion learning [14, 25], to dynamic movement primitives [22]. For
instance, if we parameterize intents via policies, we can derive a
similar confidence metric based on probabilities of observed human
actions under a stochastic policy, rather than costs.

3 EXPERT CASE STUDY
In this section, we introduce three manipulation tasks and use
expert data to analyze confidence estimation and assistance. We
later put CASA’s assistive capacity to test with non-experts in a
user study in Appendix C.

3.1 Experimental Setting
We conduct our experiments on the simulated 7-DoF JACO arm
shown in Fig. 2. We use the pybullet interface [6] and teleoperate
the robot via keyboard commands. We map 6 keys to bi-directional
𝑥𝑦𝑧 movements of the robot’s end-effector, and 2 keys for rotating
it in both directions.

We test CASA on 3 different tasks. In the first, deemed Known
Goal, we control for the situation where there is no misspecification:
the robot must assist the user to move to the known green goal
location in Fig. 2. In the other tasks, we test CASA’s efficacy in the
case of misspecification, where the user’s desired intent is initially
missing from the robot’s known set Θ. In the second task, Unknown
Goal, the person teleoperates the robot to the red goal which is
unknown by the robot. Finally, in the third task, Unknown Skill, the
person tries a more complicated intent which involves pouring the
contents of the cup at a goal location unknown to the robot.

For the Unknown Goal and Unknown Skill tasks, we first run
CASA before being exposed to the new intent (CASA before learn-
ing). Detecting low confidence, the robot asks for demonstrations
and learns the missing intents via deep maximum entropy IRL as
discussed in Sec. 2.5. We teleoperate with CASA after learning, to
assess the quality of robot assistance after learning the new intent.

We compare CASA to a policy blending assistance (PBA) baseline
[8] most closely related to our work that assumes 𝛽 = 1 for all
intents and arbitrates according to the distance 𝑑𝜃 ∗ to the predicted
goal: 𝛼 = min(1, 𝑑𝜃 ∗/𝐷), with 𝐷 some threshold past which the
robot does not assist. Our choice of baseline was informed by an
analysis of arbitration methods presented in Appendix B.

3.2 Well-specified Tasks
Fig. 2 (top) showcases the results of our experiment for the Known
Goal task. Looking at the confidence plot, we see that 𝛽𝜃 increases
with time for the correct green goal, while it remains low for the al-
ternate known purple goal. In the arbitration plot, as 𝛽𝜃 ∗ increases,
𝛼 gradually decreases, reflecting that the robot takes more control
authority only as it becomes more confident that the person’s in-
tent is indeed 𝜃∗. Similarly, since there is no misspecification, PBA
arbitration steadily decreases the human’s contribution to the final
control. Both methods result in smooth trajectories which go to the
correct goal location.
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Figure 2: Expert case study results. For each of threemanipulation tasks, we compute confidence estimates before learning and,
for the misspecified tasks (middle, bottom), we recompute the confidence estimates after learning. We also plot the strength
of assistance before and after learning and compare to a policy blending baseline [8].

3.3 Misspecified Tasks
Our approach distinguishes itself in how it handles misspecified
tasks. During the Unknown Goal task, in Fig. 2 (middle), CASA
before learning estimates low 𝛽𝜃 for both goals, since neither goal
explains the person’s motion moving towards the red goal. The
estimated 𝛽𝜃 is slightly higher for the green goal than for the purple
one because it is closer to the user’s input; however, neither are
high enough to warrant an arbitration 𝛼 below 1, and thus the robot
receives no control. In Fig. 2 (bottom), we observe almost identical
behavior before learning for the Unknown Skill task: the known
intents do not match the user’s behavior, and thus the user is given
full control authority and completes the task.

This contrasts PBA, which, for both Unknown Goal and Un-
known Skill, predicts the green goal as the intent. Since in both
cases the user’s desired trajectory passes near the green goal, PBA
erroneously takes control and moves the user towards it, requiring
the human to counteract the robot’s controls to perform the task.

In the middle plots for each of the misspecified tasks, we see for
CASA after learning, the newly-learned intents receive confidence
estimates which increase as the robot is able to observe the user,
and CASA contributes more to the control as it becomes confident.

4 USER STUDY
We tested our method’s assistive capacity with non-experts in a
user study. We replicated our lab set-up in a pybullet simulator [6]
in which users could teleoperate a 7 DoF JACO robotic arm using
keyboard inputs (Fig. 2). We tested the same three tasks from Sec. 3
(Known Goal, Unknown Goal, and Unknown Skill) and manipulated
the assistance method with three levels: no assistance (NA), policy
blending assistance (PBA) [8], and CASA. For Unknown Goal and

Unknown Skill, we compared our method before and after learning
new intents against the NA and PBA baselines.

We found that when there was nomisspecification (KnownGoal),
CASA performed similarly to PBA, and both did better than NA.
Meanwhile, when there was misspecification (Unknown Goal and
Unknown Skill), assisting with CASA before learning quickly re-
linquished control to the human and performed similarly to NA,
whereas PBA forced the users to counteract the robot’s control.
CASA after learning, however, showed a significant improvement
in assistance quality. Full results are described in Appendix C.

5 CONCLUSION
We formalized a confidence-aware shared autonomy process where
the robot can adjust its assistance based on how confident it is in
its prediction of the human intent. We introduced an approximate
solution for estimating this confidence, and demonstrated its ef-
fectiveness in adjusting arbitration when the robot’s skill set is
misspecified and enabling continual learning of new skills.

Due to COVID, we ran our experiments in a simulator, which
does not replicate the difficulty inherent in teleoperating a real
manipulator via a joystick interface. Despite this, we are encour-
aged to see robots have a more principled and robust way to arbi-
trate shared autonomy, as well as decide when they need to learn
more to be better teammates. We look forward to applications of
our confidence-based ideas beyond manipulation robots, to semi-
autonomous vehicles or any other shared autonomy scenarios.
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Figure 3: Analysis of arbitration methods. After tracking an
optimal trajectory for the Unknown Goal task, we show the
robot’s belief and confidence estimates for each known goal
(left), as well as the 𝛼 values under the distance, belief, and
confidence-based arbitration schemes (right).

A DEEP MAXIMUM ENTROPY IRL
We represent the missing intent 𝜃𝜙 as a neural network cost param-
eterized by 𝜙 and learn it via deep maximum entropy IRL [10]. The
gradient of the IRL objective with respect to the cost parameters 𝜙
can be estimated by:

∇𝜙L≈
1
|D∗ |

∑
𝜏 ∈D∗
∇𝜙𝐶𝜙 (𝜏)−

1
|D𝜙 |

∑
𝜏 ∈D𝜙

∇𝜙𝐶𝜙 (𝜏)

.D∗ are (noisy) demonstrations of the person executing the desired
missing intent via direct teleoperation, and D𝜙 are trajectories
sampled from the 𝐶𝜙 induced near the optimal policy, which we
obtain using TrajOpt [26]. With just a few (noisy) demonstrations
D∗ of the person executing the desired missing skill via direct
teleoperation, the robot can learn an expressive cost function.

B EXPERT CASE STUDY
B.1 Arbitration Method Comparison
We compare CASA to a policy blending assistance (PBA) baseline
[8] most closely related to our work that assumes 𝛽 = 1 for all
intents and arbitrates according to the distance 𝑑𝜃 ∗ to the predicted
goal: 𝛼 = min(1, 𝑑𝜃 ∗/𝐷), with 𝐷 some threshold past which the
robot does not assist. Although there exist seemingly more sophis-
ticated arbitration schemes which are functions of 𝑃 (𝜃∗ | 𝜉) or the
entire distribution 𝑃 (𝜃 | 𝜉), they are significantly less robust to
task misspecification. This is because when the user teleoperates
according to an unknown intent, 𝑃 (𝜉 | 𝜃 ) will be low for all known
𝜃 ∈ Θ, but forming 𝑃 (𝜃 | 𝜉) requires normalizing over all known
intents, after which 𝑃 (𝜃∗ | 𝜉) can still be very high unless the user
happened to operate in a way that appears equally unlikely under
the known intents.

We analyzed this phenomenon by tracking a reference trajectory
for the Unknown Goal task which moves optimally towards the
unknown goal (see Fig. 2 for the task layout). We compared the
performances of the distance and confidence arbitration methods,
as well as a belief-based method which sets 𝛼 = (𝑃 (𝜃∗ | 𝜉) |Θ| −
1)/(|Θ| − 1) (chosen so that 𝛼 = 0 when 𝑃 (𝜃∗ | 𝜉) = 1/|Θ|, 𝛼 = 1
when 𝑃 (𝜃∗ | 𝜉) = 1). As shown in Fig. 3, the confidence in each
goal stays low enough that the robot would have left the user in full
control, while the relatively higher likelihood of one goal causes
the belief 𝑃 (𝜃∗ | 𝜉) to quickly go to 1 and thus set the user’s control
authority to 0 under the belief-based arbitration scheme.

We examined one belief-based arbitration method here, but since
𝑃 (𝜃∗ | 𝜉) rapidly goes to 1, any other arbitration that is a function
of the belief 𝑃 (𝜃 | 𝜉) would similarly try to assist for the wrong goal,
motivating our choice of the simpler but more robust distance-based
arbitration baseline.

C USER STUDY
We now present the results of our user study, testing how well our
method can assist non-expert users.

C.1 Experimental Design
Due to the COVID-19 pandemic, we were unable to perform an
in-person user study with a physical robot. Instead, as described
in Sec. 3, we replicated our lab set-up in a pybullet simulator [6]
in which users can teleoperate a 7 DoF JACO robotic arm using
keyboard inputs (Fig. 2).

We split the study into four phases: (1) familiarization, (2) no
misspecification, (3) misspecification before learning, and (4) mis-
specification after learning. First, we introduce the user to the simu-
lation interface by asking them to perform a familiarization task. In
the next phase, we tested the Known Goal task. In the third phase,
we tested the two misspecified tasks, Unknown Goal and Unknown
Skill, then asked participants to provide 5 demonstrations for each
intent. Finally, in the fourth phase, we retested the misspecified
tasks using cost functions learned from the demonstrations.

Independent Variables: For each experiment, we manipulate
the assistance method with three levels: no assistance (NA), pol-
icy blending assistance (PBA) [8], and Confidence-Aware Shared
Autonomy (CASA). For Unknown Goal and Unknown Skill, we
compared our method before and after learning new intents against
the NA and PBA baselines.

Dependent Measures: Before each task, we displayed an ex-
emplary reference trajectory to help participants understand their
objective. As such, for our objective metrics, we measured Error as
the sum of squared differences between the intended and executed
trajectories, Efficiency Cost as the sum of squared velocities across
the executed trajectory, and Effort as the number of keys pressed.
To assess the users’ interaction experience, we administered a sub-
jective 7-point Likert scale survey, asking the participants three
questions: (1) if they felt the robot understood how they wanted
the task done, (2) if the robot made the interaction more effortless,
and (3) if the assistance provided was useful.
Participants: We used a within-subjects design and counterbal-
anced the order of the assistance methods. We recruited 11 users
(10 male, aged 20-30) from the campus community, most of whom
had technical background.
Hypotheses:
H1: If there is no misspecification, assisting with CASA is not
inferior to assisting with PBA, and is superior to NA.
H2: If there is misspecification, assisting with CASA before learning
is more accurate, efficient, and effortless than with PBA and not
inferior to NA.
H3: If there is misspecification, assisting with CASA after learning
is more accurate, efficient, and effortless than NA.
H4: If there is misspecification, participants will believe the robot
understood what they want, feel less interaction effort, and find
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Figure 4: Our user study objective metrics. For every task, we measured error with respect to an intended trajectory (left),
smoothness of the executed trajectory (middle), and effort relative to direct teleoperation (right).
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Figure 5: Subjective user study results. When there is no misspecification (left), our method is not inferior to PBA, whereas
when there is misspecification (center, right), the participants prefer our method after learning a new intent.
the assistance more useful with CASA after learning than with any
other baseline.

C.2 Analysis
Objective. Fig. 4 summarizes our main findings. For Known Goal,
which is well-specified, CASA does no worse than PBA and better
that NA in terms of relative effort and error. We confirmed this by
running an ANOVA, finding a significant main effect for the method
(𝐹 (2, 30) = 104.93, 𝑝 < .0001 for effort; 𝐹 (2, 30) = 8.93, 𝑝 = .0009
for error). In post-hoc testing, a Tukey HSD test revealed that CASA
is significantly better than NA (𝑝 < .0001 for effort, 𝑝 = .0013 for
error). We also performed a non-inferiority test [16], and obtained
that CASA is non-inferior to PBA within a margin of 0.065 for
effort, 0.025 for efficiency, and 0.26 for error. These findings are in
line with H1 and were expected, since the robot should have no
problem handling known intents.

For the two misspecified tasks, we first ran an ANOVA with the
method (CASA before learning, NA, and PBA) as a factor, and the
task as a covariate, and found a significant main effect (𝐹 (2, 62) =
11.8255, 𝑝 < .0001 for effort; 𝐹 (2, 62) = 6.119, 𝑝 = .0038 for error). A
TukeyHSD revealed that CASA is significantly better than PBA (𝑝 =

.0005 for effort, 𝑝 = .005 for error). We also ran a non-inferiority
test, and obtained that CASA is non-inferior to NA within a margin
of 0.035 for effort, 0.02 for efficiency, and 1.4 for error for Unknown
Goal, and 0.03 for effort, 0.09 for efficiency, and 4.5 for error for
Unknown Skill. For both unknown tasks, CASA before learning
is essentially indistinguishable from NA since a low 𝛽𝜃 ∗ would
make the robot rely on direct teleoperation. Both the figure and
our statistical tests confirm H2, which speaks for the consequences
of confidently assisting for the wrong intent.

For efficiency cost, we did not find an effect, possibly because
Fig. 4 shows that PBA is more efficient for the Unknown Skill task
than other methods. Anecdotally, PBA forced users to an incor-
rect goal thus preventing them from pouring, which explains the
lower efficiency cost. By having a high arbitration for the wrong
intent, PBA can cause a smooth trajectory, since it lowers the con-
trol authority of the possibly-noisy human inputs. However, this
trajectory does not accomplish the task. When running an ANOVA
for each of the tasks separately, we found a significant main effect
for the method for Unknown Goal (𝐹 (2, 30) = 9.66, 𝑝 = .0006), and
a post-hoc Tukey HSD revealed CASA is significantly better than
PBA (𝑝 = .0032), further confirming H2.

Lastly, we looked at the performance with CASA after learning
the new intents. For Unknown Goal, a simple task, the figure shows
that CASA after learning doesn’t improve efficiency and error, but
it does reduce relative effort when compared to NA. For Unknown
Skill, a more complex task, CASA after learning outperforms NA.
This is confirmed by an ANOVA with the method (NA, CASA after
learning) as the factor, where we found a significant main effect
(𝐹 (1, 41) = 53.60, 𝑝 < .0001 for effort; 𝐹 (1, 641) = 8.6184, 𝑝 = .0054
for efficiency cost), supporting H3.
Subjective.We show the average Likert survey scores for each task
in Fig. 5. In line with H1, for the Known Goal task, users thought
the robot under both PBA and CASA had a good understanding of
how they wanted the task to be done, made the interaction more
effortless, and provided useful assistance. The results are in stark
contrast to NA, which scores low on all those metrics. For Unknown
Goal and Unknown Skill, all methods fare poorly on all questions
except for CASA after learning, supporting our H4.
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