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ABSTRACT
Human motion prediction is an essential component for enabling
closer human-robot collaboration. The task of accurately predicting
human motion is non-trivial. It is compounded by the variability
of human motion, both at a skeletal level due to the varying size
of humans and at a motion level due to individual movement’s
idiosyncrasies. These variables make it challenging for learning
algorithms to obtain a general representation that is robust to the
diverse spatio-temporal patterns of human motion. In this work,
we propose a modular sequence learning approach that allows end-
to-end training while also having the flexibility of being fine-tuned.
Our approach relies on the diversity of training samples to first
learn a robust representation, which can then be fine-tuned in a
continual learning setup to predict the motion of new subjects. We
evaluated the proposed approach by comparing its performance
against state-of-the-art baselines. The results suggest that our ap-
proach outperforms other methods over all the evaluated temporal
horizons, using a small amount of data for fine-tuning. The im-
proved performance of our approach opens up the possibility of
using continual learning for personalized and reliable motion pre-
diction.

1 INTRODUCTION
Human motion prediction involves forecasting future human poses
given past motion. For enabling efficient Human-Robot Collabora-
tion, a crucial aspect of robot perception is real-time anticipatory
modeling of human motion [15, 18, 22, 36]. Fluid tasks such as col-
laborative assembly, handovers, and navigating through moving
crowds require combining aspects of perception, representation,
and motion analysis to accurately and timely predict probable hu-
man motion [4, 17, 20, 21, 23, 24, 29]. This would enable the robot to
anticipate the human pose and intent and plan accordingly around
the human partner without disturbing the natural flow of the hu-
man’s motion. However, accurate and timely prediction of human
motion remains a non-trivial problem due to the complex and in-
terpersonal nature of human behavior [19, 40].

To address the aperiodic and stochastic nature of human motion,
prior work has framed the problem of predicting future poses like
that of sequence learning, modeling the spatio-temporal aspect of
human motion using Recurrent Neural Networks [2, 12, 33, 40].
These approaches aim to learn a unified representation from train-
ing samples that are expected to generalize for test data. However,
generalization comes at the cost of learning individual subtleties
of motion, which is crucial for human-robot collaboration. When
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Figure 1: Qualitative performance of different motion pre-
diction methods for walking on UTD-MHAD. The frame-
work trained with Curriculum Learning (C.L.) have predic-
tions that are closer to the ground-truth poses.

training these networks, the core assumption is that the given data
points are realizations of independent and identically distributed
(i.i.d) random variables. However, this assumption is often vio-
lated, e.g., when training and test data come from different distri-
butions (dataset bias or domain shift) or the data points are highly
interdependent (e.g., when the data exhibits temporal or spatial
correlations) [10]. Both these cases are observed in human mo-
tion prediction, making it challenging to deploy models trained on
benchmark models to the real world.

While generalization at the cost of learning individual prefer-
ences is sub-optimal, there is also a need to learn a robust represen-
tation over a diverse range of training samples. As such, training
and generalizing over a benchmark dataset cannot be discarded and
is, in fact, necessary as the first step to accurate motion prediction.
Prior work on language modeling has demonstrated the benefit of
learning a rich representation on a large training data followed by
fine-tuning on a target task [5, 11, 39]. For human motion predic-
tion, this can be posed as a continual learning problem whereby a
motion prediction model acquires prior knowledge by observing a
large range of human activities. This is followed by fine-tuning its
parameters to accurately capture the subtleties of motion prediction
for a particular individual. Such a learning setup, however, brings
additional challenges to an already non-trivial problem, with prior
work on continual learning demonstrating the risk of catastrophic
forgetting [31, 34].

To address the challenges mentioned above, we propose a con-
tinual learning scheme that can improve human motion prediction
accuracy while reducing the risk of catastrophic forgetting. Our
framework is modular and is developed to acquire new knowledge
and refine existing knowledge based on the new input. In line with
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prior work on computational neuroscience, which states that the
brain must carry out two complementary tasks: generalize across
experiences, and retain specific episodic-like events [30, 34]; we
utilize a two-phase learning scheme. Our framework aims to learn
a robust representation of past observations by training on a bench-
mark dataset in the first phase. This is achieved by using a modular
encoder-decoder architecture with adversarial regularization [40],
that has state-of-the-art performance on benchmark datasets. In
the second phase, we use the representation learning aspect of
the framework to condition future poses and fine-tune only the
decoder module on new samples in a curriculum learning setup
[3]. This mitigates the problem of training from scratch while also
providing performance gains, both quantitatively over short, mid,
and long-term horizons and qualitatively in terms of generating
motion that is perceptibly similar to the ground-truth.

2 PROBLEM FORMULATION
Formally defined, human motion prediction is the problem of pre-
dicting the future human pose over a horizon, given their past pose
and any additional contextual information. In this paper, we as-
sume that there is only one agent in the scene. For any particular
scenario, the input to our model is the past or observed trajectory
frames, spanning time 𝑡 = 1 to 𝜏 ,: X = {𝑥1, . . . , 𝑥𝜏 }. Each frame
𝑥𝑡 ∈ R𝑁 denotes the 𝑁 -dimensional body pose. 𝑁 depends on the
number of joints in the skeleton, 𝐽 and the dimension of the joints
𝐷 , where 𝑁 = 𝐽 ×𝐷 . The expected output of the model is the future
trajectory frames over horizon 𝐻 , i.e. the ground truth pose over
the horizon 𝑡 = 𝜏 + 1 to 𝜏 + 𝐻 : Y = {𝑦𝜏+1, . . . , 𝑦𝜏+𝐻 }.

Our first objective is to learn the underlying representation
which would allow the model to generate feasible and accurate
human poses Ŷ = {𝑦𝜏+1, . . . , 𝑦𝜏+𝐻 }. We assume that future human
pose is conditioned on the past observed or generated poses and
predict each frame in an auto-regressive manner as formulated
below:

𝑝\ (Ŷ) =
𝜏+𝐻∏
𝛿=𝜏+1

𝑝\ (𝑦𝛿 |𝑦𝜏 :𝛿−1, 𝑥1:𝜏 ) (1)

where the joint distribution is parameterized by \ .
Next, we use these learned parameters to fine-tune for a specific

agent who was not observed during the training phase, using a
continual learning setup. Instead of updating all the model param-
eters, we update a specific module, say the decoder module, with
corresponding parameters \∗. We formulate this as follows, similar
to prior work in continual learning [26]:

log 𝑝 (\∗ |𝐷) = log𝑝 (𝐷𝐵 |\ ) + log 𝑝 (\ |𝐷𝐴) − log 𝑝 (𝐷𝐵) (2)

where 𝐷𝐴 represents the first phase’s training data, which involves
learning a representation from the large data distribution. 𝐷𝐵 rep-
resents the second phase’s training data, whereby we aim to learn
the parameters for a specific human. 𝑙𝑜𝑔𝑝 (\ |𝐷𝐴) embeds all the
prior information learned during the training phase.

3 CONTINUAL LEARNING FOR HUMAN
MOTION PREDICTION

The collective goal of our approach is to accurately predict human
motion while being flexible to parameter or architectural updates,
given new data. Our overall framework is comprised of an encoder
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Figure 2: Motion prediction architecture

and decoder, trained end-to-end with adversarial regularization on
the latent variables, building on top of our prior work [40]. The
encoder aims to learn a rich representation over past trajectories,
which the decoder can use to condition its prediction. To improve
model stability and robustness of the latent space, we use adversarial
regularization through discriminators. This acts as a regularizer
during training and can improve the network’s stability during
parameter updates over new data. We will first describe the overall
model for motion prediction and then discuss its flexibility for
fine-tuning on a particular agent.

3.1 Overall model for motion prediction
Motion Encoder: The encoder learns a representation over the
high-dimensional observed trajectory, projecting the input to a
low-dimensional latent space. To obtain a rich and more robust
representation over the past trajectories, we extract the past velocity
and acceleration features along with the provided positional values,
in line with prior work on motion prediction [40]. The velocity and
acceleration features are first and second-order derivatives of the
position values for each skeleton joint.

For encoding spatio-temporal representation from the position,
velocity, and acceleration data, we employ Recurrent Neural Net-
works, in particular Gated Recurrent Units (GRU). We use unidirec-
tional GRUs, as we wish to predict human motion in real-time. For
each stream, the stream-specific GRU aims to extract the spatio-
temporal representation that summarizes the input sequence, with
the operation formulated as follows:

ℎ𝑠,𝑡 = 𝐺𝑅𝑈 (ℎ𝑠,𝑡−1, 𝑥𝑠,𝑡 , 𝜙𝑠 ) (3)

where 𝑠 represents the specific stream: position, velocity or accel-
eration, 𝑥𝑠,𝑡 denotes the input to the GRU at 𝑡 , ℎ𝑠,𝑡−1 corresponds
to the past hidden state and 𝜙𝑠 represent the parameters of the
GRU. The output from each GRU represents disparate information
corresponding to the past trajectory and needs to be fused adap-
tively. As such, we use a multi-head self-attention mechanism [38]
which is tasked to disentangle and extract relevant stream-specific
representation.

ℎ𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑝𝑜𝑠,𝑡 ;ℎ𝑣𝑒𝑙,𝑡 ;ℎ𝑎𝑐𝑐,𝑡 );
ℎ𝑎𝑡𝑡,𝑡 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(ℎ𝑡 ;𝜙𝑎𝑡𝑡 )

(4)

where ℎ𝑎𝑡𝑡,𝑡 is the output of the attention mechanism, and 𝜙𝑎𝑡𝑡
represents the parameters. The output ℎ𝑎𝑡𝑡,𝑡 is used to obtain the
latent representation, which is tasked to characterize the observed
trajectory.
Latent Representation: The latent representation aims to cap-
ture relevant spatial and temporal semantics from the observed
data, which can then be used to condition motion prediction. The
latent representation is comprised of a continuous random variable
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and a categorical random variable. The motivation behind using
both continuous and categorical variables is to jointly model the
continuous aspect of human motion, such as the spatial semantics
of a particular activity and the discrete characteristics of human
motion such as the class activity or segment.

To obtain the continuous latent variable 𝑧𝑡 , the output from the
self-attention module is passed through a linear layer. In the case of
the categorical latent variable 𝑐𝑡 , the output from the self-attention
module is passed through a linear layer followed by a softmax layer.

𝑧𝑡 = 𝐿𝑖𝑛𝑒𝑎𝑟 (ℎ𝑎𝑡𝑡,𝑡 )
ℎ𝑐,𝑡 = 𝐿𝑖𝑛𝑒𝑎𝑟 (ℎ𝑎𝑡𝑡,𝑡 )
𝑐𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (ℎ𝑐,𝑡 )

(5)

Adversarial Regularization: To enforce a prior on the latent
space, we use adversarial learning, similar to the Adversarial Au-
toencoders (AAE) [32] framework. This serves the purpose of a
regularizer as there is a modification to the overall objective func-
tion: the objective function now consists of a reconstruction loss
and an adversarial loss. We reason that this helps improve the
stability of the overall framework for continual learning, as the
parameters are updated based on two competing objectives: the
reconstruction loss and the discriminator loss.

Similar to the GAN [13] and AAE [32] setups, the encoder aims
to confuse the discriminators by trying to ensure that its output is
similar to the aggregated prior. The discriminators are trained to
distinguish the true samples generated using a given prior, from
the latent space output of the encoder, thus establishing a min-max
adversarial game between the networks [13, 32].

We use two discriminators, one for the continuous latent variable
and the other for the categorical latent variable. The discriminators
compute the probability that a point 𝑧𝑡 or 𝑐𝑡 is a sample from the
prior distribution that we are trying to model (positive samples), or
from the latent space (negative sample). We use a Gaussian prior
for continuous latent variables and a uniform distribution prior for
categorical latent variables.
Decoder: The decoder uses the latent representation and the past
generated pose to predict the future pose for each time step. It is
auto-regressive, i.e., it uses the output of the previous timestep to
predict the current pose and has only one stream: position as the
expected output is future joint positions of the human.

The input to the decoder is the latent representation: 𝑧𝑡 and
𝑐𝑡 and the past generated pose, or the seed pose at time 𝑡 if it is
predicting the first time-step, 𝑡+1. This is then passed to an attention
mechanism that allows the decoder to adaptively condition its
output on the latent variables that provide long-term information
over the observed frames and the immediate generated frame. The
output from this attention mechanism is next passed to a GRU cell,
similar to the one at the encoder. This is followed by a Structured
Prediction Layer (SPL) [2], which predicts each joint hierarchically
following a skeleton tree, thus allowing the decoder to enforce
structural prior on its final output. The operations at the decoder
are formulated as follows:

𝑝𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑧𝑡 , 𝑐𝑡 , ℎ𝑑𝑒𝑐,𝑡−1)
𝑝𝑎𝑡𝑡,𝑡 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑝𝑡 , 𝜙𝑎𝑡𝑡 )
ℎ𝑑𝑒𝑐,𝑡 = 𝐺𝑅𝑈 (𝑆𝑡−1, 𝑝𝑎𝑡𝑡,𝑡 , 𝜙𝑝𝑜𝑠 )
𝑆𝑡+1 = 𝛾 (ℎ𝑑𝑒𝑐,𝑡 )

(6)

3.2 Curriculum learning for the decoder:
The encoder-decoder architecture with adversarial regularization is
trained to convergence on the training set. This training is followed
by providing the overall architecture with unseen but small samples
of motion data. This aims to relax the i.i.d assumption of the training
procedure as our framework now has access to limited motion
samples of the agent that it is trying to model.

Our choice of continual learning scheme is the curriculum learn-
ing setup [3], whereby we first train the network on a comparatively
simpler task of representation learning, followed by a relatively dif-
ficult task of fine-tuning its parameters for a specific human subject.
Our implementation is based on findings in connectionist models
[35, 37], in particular self-organizing maps which reduce the levels
of functional plasticity (i.e., ability to acquire knowledge in neural
networks) through a two-phase training of the topographic neural
map [27, 28]. The first phase is the organization phase, where the
neural network is trained with a high learning rate and large spatial
neighborhood size, allowing the network to reach an initial rough
topological organization. The second phase is referred to as the
tuning phase, where the learning rate and the neighborhood size
are iteratively reduced for fine-tuning [34]. We aim to adopt these
findings to a sequence learning framework.

Following prior work on developmental and curriculum learning
[3, 14], we fine-tuned the architecture on the new data. We adopt
techniques that will allow us to retain previous knowledge and
avoid catastrophic forgetting during fine-tuning. In particular, we
rely on discriminative fine-tuning [16], whereby we fine-tune only
the decoder network at a different learning rate while freezing the
encoder and the discriminator networks.
Fine-tuning the decoder: In line with equation 5, the input to the
model is the sequence of observed poses: X = {𝑥1, . . . , 𝑥𝜏 }, with
the output being of the encoder being 𝑧𝜏 and 𝑐𝜏 . However, instead
of imposing a prior on the latent space and training the encoder-
decoder end-to-end, we only update the decoder’s parameters. We
also use a lower learning rate and rely on a small number of training
samples to improve model stability and reduce the likelihood of
catastrophic forgetting.

We leverage the representation learning capability of the frame-
work that it attained when training on a large and diverse dataset.
The encoder network is tasked to provide a representation summa-
rizing the past observation that is used by the decoder to condition
its prediction, similar to equation 6. The pre-trained weights from
the training set are used to initialize the overall architecture and
act as prior knowledge. The decoder weights are updated based on
the reconstruction loss on the new data.

4 EXPERIMENTAL SETUP
4.1 Dataset
We evaluated the performance of our approach on the widely used
human-activity dataset: UTD-MHAD [9]. The dataset comprises
27 action classes covering activities from hand gestures to training
exercises and daily activities, thus providing relevant activities
for human-robot collaboration. Each activity was performed by 8
different subjects, with each subject repeating the activity 4 times.
In our experiments, we use only Skeleton data for predicting human
motion, following previous work in this domain [2, 8, 12, 25, 33], and
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Table 1: MSE (in cm2) comparison of fune-tuning vs no fine-tuning on UTD-MHAD for different test subjects) (Lower is better)

Subject 2 Subject 4 Subject 6
Frames 2 4 8 10 13 15 2 4 8 10 13 15 2 4 8 10 13 15

Zero-Velocity 11.20 27.37 66.85 86.23 112.39 127.64 13.11 32.33 77.22 97.80 123.99 138.53 10.37 25.56 64.62 85.29 115.33 135.17
Our method without Curriculum-Learning 5.41 14.75 33.87 41.89 51.33 56.12 7.78 18.26 41.66 51.46 62.67 68.1 6.99 16.18 38.51 49.40 63.7 71.68
Our method with Curriculum-Learning 7.62 16.17 32.35 38.63 45.72 49.13 6.98 14.79 30.29 36.51 43.81 47.61 6.51 13.44 27.49 33.66 41.74 46.41

considered each of the 20 provided joints. For all experiments, the
model predicted output for the next 15 frames, using observation
over the past 15 frames.

4.2 Generalized Representation Learning
We used the cross-subject evaluation scheme, training and validat-
ing on odd-numbered subjects for the first phase, thus providing
the framework with a large training sample and maximizing the
likelihood of encountering diverse demonstrations. To evaluate the
performance, we hold out a section of the data for the validation
set and early stopping. This reduces the likelihood of overfitting on
the training data while also provide the mechanism for stopping
the training procedure.

4.3 Curriculum Learning for a specific subject
Having learned a generalized representation, the second phase
involved training the framework in a curriculum learning setup.
Here, the experiments are conducted on a particular held-out even-
numbered subject. We fine-tuned only the decoder using a reduced
learning rate, with the encoder weights initialized from the first
phase. As each subject has 4 trials, we trained on one trial and
tested on the other 3 trials.

4.4 State-of-the-art method and baseline
For evaluating the efficacy of our curriculum learning setup, we
compared against a non-curriculum learning framework, and the
zero-velocity baseline [33]. The first benchmark [40] is comprised
of an encoder-decoder framework, with adversarial regularization,
but with no provision for curriculum learning. The zero-velocity
baseline assumes that all the future predictions are identical to the
last observed pose and is challenging to outperform for short-term
prediction [2, 33]. It also allows us to gauge themovement dynamics,
with a lower MSE for zero-velocity suggesting less movement and
vice-versa for higher MSE.

4.5 Evaluation Metric
We evaluated the performance of all models using theMean Squared
Error (MSE), which is the 𝑙2 distance between the ground-truth and
the predicted poses at each timestep, averaged over the number of
joints and sequence length, in line with prior work [1, 6, 7, 40]. The
MSE is calculated as:

L(X, X̂) = 1
𝑇 .𝐾

𝑇∑
𝑡=1

𝐾∑
𝑖=1

(𝑥𝑖𝑡 − 𝑥𝑖𝑡 )2 (7)

where, T and K are the total number of frame and joints respec-
tively.

5 RESULTS AND DISCUSSION
Results: We present the results of all approaches on the UTD-
MHAD on table 1. We report the performance of all approaches at
distinct frame intervals to circumvent the problem of frame drops
during data collection and subsequent evaluation [40]. Our frame
intervals aim to evaluate all models on short (2 & 4), mid (8 &
10), and long-term motion prediction (13 & 15). Table I depicts the
performance of all approaches with respect to the test subjects. The
results in Table I suggest that fine-turning the framework allows it
to outperforms all other methods and the zero-velocity baseline for
short, mid, and long-term prediction.
Discussion: Our proposed approach outperformed the prior state-
of-the-art approach and baseline both quantitatively by having
lower MSE and qualitatively in terms of generating motion closer
to the ground-truth pose (see Fig. 1). This shows the benefit of the
curriculum learning approach while also suggesting that our overall
framework is robust to catastrophic forgetting. The performance
gain is especially significant over the mid and long-term, as the
decoder is trained to learn the spatial-temporal movement pattern
of a specific subject and can generate the future pose with higher
accuracy.

Using a curriculum-learning setup, albeit on a small training
sample, allows the framework to capture individual human motion
subtleties, as seen by the lower MSE, particularly over the mid and
long-term horizons. The approach is particularly useful when there
is significant movement over the given horizon, as seen for Subjects
4 and 6 (table 1), who have higher MSE loss on the zero-velocity
baseline. For Subject 2, there is overall less movement as seen by
the zero-velocity MSE loss, and hence the performance gain is not
significant over the mid and long-term and even worse over the
short-term. Overall, the results are particularly promising as we
did not fine-tune the encoder, instead only focusing on the decoder.
Further improvement can be attained by fine-tuning the encoder.

6 CONCLUSION
In this work, we present a curriculum learning approach that opens
the possibility of continual learning for human motion prediction,
especially if the model is especially deployed in the wild. Our frame-
work first learns a general representation over diverse training sam-
ples before fine-tuning on a target human subject. Our experiments
suggest the feasibility of curriculum learning with performance
gains over non-curriculum learning approaches. Future work will
focus on fine-tuning to activities and domains that were not ob-
served in training in a zero-shot learning setup.
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