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ABSTRACT
Modern computer users face health challenges from sitting contin-
ually and practicing bad posture. Solutions (e.g., phone applications
and life coaches) exist to address these potentially hazardous behav-
iors, but current solutions either fall into disuse after a short period
of time or are unattainable for many potential users. We propose
socially assistive workplace robots as a solution with the potential
to stay in use for longer than comparable apps while offering easier
access than personal coaches. Building on a related past study by
our research group, this paper presents an updated workplace com-
panion robot design with more personalization features that we
plan to evaluate in an upcoming long-term user study. Data gained
from the future deployment will offer additional insights for how
to personalize future robot prototypes via online learning. This
work can help to inform other researchers with interest in socially
assistive robotics, long-term robot deployments, and personalized
robot learning.
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1 INTRODUCTION
Health challenges specific to sedentary office work (e.g., poor car-
diovascular and musculoskeletal health) are becoming increasingly
common for computer users of all walks of life [10]. Automated
break-taking aids (like computer and phone apps) can yield short-
term success in improving health outcomes, but these solutions
have yet to demonstrate sustained behavior change results. More
resource-intensive and tailored behavior change aids (such as life
coaches) can produce long-term changes in break-taking habits [4];
however, these tailored treatments cannot scale up to the needs
of a broader population due to cost and logistical complications.
Physically embodied robotic systems have the scalability and au-
tomation of break-taking support apps while offering a presence
and social engagement akin to life coaches. Therefore, we propose
a tabletop socially assistive robotic (SAR) system, pictured in Fig. 1,
as a suitable middle ground for supporting healthy habits at work.

Past work on the project discussed in this paper has shown that
over a few days, participants enjoyed using a break-taking SAR
system more than a phone application-like alternative, but there
were no significant differences in user productivity or break mo-
tivation [15]. Participants also pointed out desired changes in the
robotic system to better suit their needs.Work by [8] further showed
a relationship between expressive break-taking systems and user
responsiveness. Efforts in a related robotics research area (SAR sys-
tems in autism therapy) shows that long-term, in-situ engagement
with socially assistive robots can yield positive behavioral changes,

Figure 1: System setup for the tabletop robot. Not shown:
seat sensor and wireless chair sensor module.

such as improving social skills in children with developmental de-
lays [13]. In the current paper, we propose a method for studying
an improved version of the break-taking treatment from [15] for
a time period on the order of the robotic treatment length in [13].
The planned study will help us understand if robotic break-taking
aids, in a way similar to robotic social coaches, can promote lasting
and positive behavior change.

Our central goal in this work is to understand differences be-
tween users’ long-term break-taking practices when supported by
an embodied SAR system vs. a non-embodied phone app-like alter-
native. We propose a single-case-style design that will allow us to
compare participant behaviors of interest (i.e., responses to baseline
and different treatment phases) across study phases. The results
will inform future break-taking intervention work and supply the
initial dataset needed for more sophisticated future SAR system
learning strategies.
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2 SAR SYSTEM DESIGN
In the previous SAR deployment from [15], an initial robotic system
prototype built around the Anki Cozmo robot helped users to take
breaks at work over a one-day period. One challenge, as mentioned
in the past paper, was occasional losses in connection between the
system’s base station hardware and the robot. This problem was
manageable in a short-term deployment, but would cause major
difficulties over long-term study designs. Among other products
of that work (such as promising short-term social findings), we
gleaned participant critiques of the SAR system. Most commonly,
users mentioned:

• Confusion about when the robot cue started and stopped
• Feelings that the robot interrupted their work
• Desire for a more personalized robot
• Preferences for particular types of robot cues

Although promising, the past study clearly showed that the SAR
system required revision. One key needed update was improve-
ments to the robot connectivity to ensure robustness of operation.
The previous base station computer in [15] was a Raspberry Pi
3 B+ running Ubuntu, which interfaced with an Android phone
to control Cozmo. To achieve more flexibility and persistence in
strategies for connecting with the Cozmo, we updated the central
computer to a MinisForum U500-H Mini-PC with a Windows 10
operating system running both Android and Ubuntu emulation
environments. The Android emulator, which runs on Windows,
communicates between central logic in the Linux environment and
the Cozmo robot. The new, more substantial central processor is
able to persistently reconnect to the Cozmo robot and prevent inter-
ruptions to the robot function during future deployments. A recent
system test demonstrated the robot’s ability to stay connected for
multiple weeks without interruption.

The other observed design flaws, while not as critical to the
literal functioning of Cozmo, would interfere with the ongoing
adoptability of the robot over extended deployments. Thus, we also
prioritized addressing these shortcomings in the updated system.
To reduce confusion about robot cue bounds, we updated the robot
routine logic to stop prompting the user once the person stands
up to take a break, rather than enforcing that the robot complete a
long sequence of animations.

To address the feeling that the robot interrupted the work of
users, we added to the sensing system that the Cozmo robot uses
to gauge the person’s work state. As in the previous system, we
used a seat occupancy sensor connected to the rest of the system
via a Bluetooth-enabled chair sensor module to track how long a
user remained seated. However, unlike in the previous system, the
robot does not deliver a prompt by default once a fixed amount of
time seated has passed. The updated system uses two additional
sensors–a LIS3DH accelerometer (connected to the base station
via a Teensy 3.2 microcontroller) and a system “snooze” button–to
enable more alignment between robot behaviors and user needs.
The accelerometer is affixed to the participant’s keyboard, and
uses vibration to sense keystrokes, allowing for the selection of an
opportune break prompt time (within a window around the desired
break interval) when the user appears to be more interruptible; past
work on work state detection supports the selection of typing as
a proxy for work focus [9]. The snooze button is a large button

the user can press to momentarily halt and delay the break-taking
prompt. In this way, the system can still account for times the user
may be mid-task even in the absence of active keyboard use. A final
sensor in the system (residual from [15]) is a webcam for recording
video of participant interactions with the system.

Past participants had also expressed a desire for a more person-
alized robot. To some extent, the improved user state sensing dis-
cussed above helps to support this need. Through early formal and
informal deployments, we further noticed that although the state
of the art in related literature is encouraging breaks every 30 min-
utes, individual users had different break-taking needs and goals.
The updated system is designed to more easily accept personalized
user requirements upon system initialization; for example, desired
timing between break prompts is entered for each individual.

Lastly, users desired differing types of robot behavior or motion. We
know from past work such as [12] that certain requirements (e.g.,
minimal sound) exist for robots in the workplace; however, it is not
as clear how robot behaviors should personalize to the individual
or even change over time during deployment with the same user.
Our proposed long-term study will contribute to uncovering this
information; during the robot-based treatment, Cozmo will perform
a randomwalk of action styles when prompting participants to take
breaks. These action styles are generally grouped into behaviors
spanning the valence vs. energy level space proposed by Russel’s
circumplex model of affect [11]. These prompts include behaviors
such as providing happy or unhappy facial cues, lifting and lowering
the robot’s forklift, spinning in circles on a user’s desk, and charging
forward a short distance. Information about participant work state
before the prompt and subsequent response to the prompt will
provide the information needed to train initial models that can
support future personalized break-taking encouragement with this
type of system.

3 METHODS
Our planned two-month exploratory study is between-subjects
and single-case-style, i.e., following the example of [13]. We will
include a treatment-free initial baseline phase (two weeks) and
final retention phase (two weeks) in our study design. Users will
additionally experience one of the following one-month treatment
phases in between:

• SAR system: An Anki Cozmo tabletop robot-based (i.e.,
primarily hardware-mediated) interaction method for deliv-
ering break-taking prompts.

• Non-Embodied system: A phone application-based (i.e.,
primarily software-mediated) interaction method for deliv-
ering break-taking prompts, such as PomoDoneApp. Other
than having a phone as the break prompt delivery mecha-
nism (rather than the robot), this system uses the same logic
and sensor hardware setup.

The conditions will be balanced and randomly assigned to partici-
pants. The presented methods are approved by the Oregon State
University IRB under protocol #IRB-2019-0067.

3.1 Participants
The study will include ten participants who spend most of their
workday sitting at a desk and working with a computer. Specifically,
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we will recruit individuals who use a computer while seated at least
three hours a day.

3.2 Measures
We will use surveys to gauge participant opinions of and experience
with robots, as well as feelings of satisfaction, overall mood, and
productivity throughout each phase of the study. These surveys,
as outlined below, will use 7-point Likert scales unless otherwise
noted.

• A pre-study survey to capture participants’ baseline per-
ceptions of system performance expectancy, use effort ex-
pectancy, attitude toward using technology, self efficacy, and
attachment using questions based on the Unified Theory of
Acceptance and Use of Technology (UTAUT) [14]. We will
also collect details on participants’ robotics experience and
health goals.

• A weekly survey to capture participants’ experiences dur-
ing each week, using questions adapted from the NASA
Task Load Index (TLX) [6], the Self-Assessment Manikin
(SAM) [2], the Working Alliance Inventory (WAI) [7], and
questions about perceived work performance.

• A post-study survey including all UTAUT-based questions
from the pre-study survey, Ten-Item Personality Inventory
(TIPI) [5] questions, and demographic questions.

During the study, we will gather behavioral data from system
logs and audiovisual recordings. Specifically, this includes:

• Break-taking information showing if and when the par-
ticipant stands after being prompted.

• Productivity levels from keystroke activity.
• System snooze inputs from when the participant uses the
snooze button to delay breaks.

• User affect from video recordings before, during, and after
delivered prompts.

For reference during analysis, the logs also will record the timing
of break prompts and the specific Cozmo behavior used for robot
prompts.

The video recordings from the study will supply information for
qualitative analysis. To gain further context for study observations,
we will additionally ask participants to record a daily oral log of any
notable events or challenges from each day and conduct a closing
semi-structured interview with each participant.

3.3 Procedure
After consenting to participate in the study, the participant will
complete the pre-study survey; then their workspace will be outfit-
ted with the system hardware, which will initially be configured for
the two-week baseline phase. During the baseline, the participant
will complete weekly surveys and a brief daily oral log.

Next, the system will be reconfigured for the randomly assigned
treatment phase. The participant’s workspace will be equipped with
either the Cozmo robot or non-embodied system (depending on
the assigned condition). The treatment phase will last four weeks,
during which the system will provide break prompts. The same
weekly surveys and daily oral logs will occur as in the baseline
phase.

The two-week retention phase has the same setup as the baseline
phase. At the close of this phase, we will collect the system and
administer the post-study survey and interview.

3.4 Hypotheses
Our hypotheses were guided by previous work from [15] showing
evidence of more satisfaction using socially assistive robots over
non-social systems in short term study and the work from [8]
relating expressive systems and user responsiveness:

H1: Break adherence and productivity will be higher during
either treatment compared to the baseline.

H2: Breaks will be more pleasant, relaxing, and re-energizing
with the SAR system than with the non-embodied system.

H3: Responsiveness to break taking prompts will be faster
and persist for longer with the SAR system compared to
the non-embodied system.

3.5 Analysis
We will first analyze self-reported and behavioral data using visual
inspection of observations over time during each study phase, as
recommended by best practices in single-case studies [3]. The pres-
ence and repeatability of trends among users within and between
study groups will help us understand the prospective reproducibil-
ity of findings.Wewill also consider whether statistically significant
differences appear across phases by using repeated measures anal-
ysis of variance (rANOVA) and analysis of covariance (ANCOVA)
tests. User affect will be extracted from the video recordings using
OpenFace 2.2.0 [1]. We will use thematic analysis to better under-
stand qualitative data from the study (e.g., to analyze user responses
to/behaviors toward the robot from video).

4 PRELIMINARY RESULTS AND FUTURE
WORK

Running the full proposed study is a future work step, but ongo-
ing testing with a first test user reveals early anecdotal results of
our system design updates. The system connection is more robust
and reliable after the switch from phone to Android emulator con-
trol, which, paired with automatic re-connection scripts, allows the
system to operate for weeks without interruption. The keystroke
sensor shows promise as a beneficial automated fine-tuning adjust-
ment on break-taking prompt timing to mitigate the frequency of
mid-thought interruptions.

Our test user selected a one-hour break prompt spacing for his
system and continues to take breaks with the robot after multiple
weeks of use. A few of the robot prompt behaviors appear to be
too subtle; for these, he failed to even notice that the robot left its
base to deliver a cue. At the opposite end of the prompt disrup-
tiveness spectrum, other behaviors seem to take up too much desk
space or be excessively animated. This balance in initial findings
supports our future plans of personalized learning for robot behav-
ior selection; the robot should use information about its user and
surroundings to effectively cue a break while avoiding unnecessary
levels of intrusion.

Strengths of the proposed study include a relatively long-term
deployment of a robotic system in a natural environment. Because
of the large size of the population of interest, we will eventually be
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able to both achieve long-term deployments and gather enough data
to achieve statistically significant results in follow-up work. Initial
personalization features (i.e., user-selected settings) and potential
future personalization strategies (i.e., online learning strategies)
may support the enduring success of the robotic system.

Limitations of the proposed study will arise due to the small initial
sample size and the potential homogeneity of the sample popu-
lation, who will be recruited from a single university and region.
Views about break-taking vary widely among work teams, larger
organizations, and societies at large, but this early work will focus
only on the cultural context of the United States.

Ourmain future work step will be running the proposed study, an-
alyzing the results, and examining data about how users responded
to different prompts from the personalized model-training perspec-
tive. The results of the study will guide future work for personaliz-
ing assistive robots, and further quantify how people emotionally
delineate and respond to assistive robots, non-embodied systems,
and other people.
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