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Abstract—Individual, unsupervised practice of repetitive 

exercises is used frequently in both rehabilitation after stroke and 

training for squash. In both cases, motivational struggles are 

common when a physiotherapist or coach is not present and this 

can cause a lack of adherence over the long-term. In this paper, we 

present an overview of our work on creating and evaluating a 

robotic coach capable of motivating users in both of these use 

cases. We discuss our ongoing work focusing on high level 

personalisation to groups of users and how this could provide a 

starting point for a lifelong learning system capable of further 

adaption to individuals.  
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I. INTRODUCTION 

Repetitive, solo practice (i.e. without the supervision of a 
coach) can improve the skill level of sports players and is used 
regularly by high-performance players in a variety of sports [1], 
one of which is squash. However, it is used much less frequently 
by players at lower levels [1], indicating a lack of motivation 
when a coach is not present. Similarly, research in rehabilitation 
techniques after stroke strongly suggest that home-based 
rehabilitation (i.e. without the supervision of a rehabilitation 
therapist) is beneficial to the patient [2]. However it is often not 
adhered to due to (among other reasons) a lack of motivation [3]. 
We have chosen to consider both of these case studies, from 
different domains, in the same body of work due to the 
similarities in the individual, often unsupervised and repetitive 
nature of practice which helps in making long term functional 
improvements after stroke [2] and helps high performance sports 
players improve their skill level [1]. 

Personalisation (in the form of both high-level 
personalisation to groups of users based on user type and low-
level adaption to individual users over time) has been suggested 
as a key attribute of systems aiming to motivate users to conduct 
physical activity [4]. A robotic coaching system that is capable 
of high-level personalisation, combined with lifelong learning to 
adapt its behaviour to users during their individual exercise 
activities could provide extra motivation. A result of this could 
be an increase in adherence to individual exercise, with the 
potential of improved rehabilitation results for stroke survivors 
and squash players improving their skill level. In this paper we 
present an overview of ongoing studies exploring the use of 
high-level personalisation in a robotic coach of squash and 
stroke rehabilitation. We then describe our planned future work 
to include long-term Reinforcement Learning (RL) in our 
system. 

II. BACKGROUND 

Stroke is one of the leading causes of acquired adult 
disability with survivors commonly suffering permanent 
impairments such as fatigue, weakness in the arms and legs, 
aphasia and forgetfulness [5]. Squash, on the other hand, is an 
intermittent, high-intensity racket sport (shown in Fig. 11), with 
matches contested over the best of 5 games in singles 
competition [6].  

In sports coaching, praise for independent practice given by 
coaches increases the intrinsic motivation of the athlete and their 
intention to remain physically active in the future [7]. In sports 
such as squash, this independent practice is used by many of the 
top professionals and can include repetitive solo drills with little 
or no input from coaches. This type of repetitive, individual drill 
can improve a player’s skill level in a variety of sports but is 
used less frequently by non-professional players [1]. In 
rehabilitation it has also been suggested that social factors such 
as the behaviour of professionals interacting with stroke 
survivors, and the relationship held between these two parties, 
can have both positive and negative impacts on patient 
motivation [8], [9]. Therefore, a robotic coach which could be 
used at times when a human practitioner is not available and is 
capable of providing its user with motivation to conduct these 
individual exercise sessions in both domains could help non-
professional squash players improve their skill level and stroke 
survivors see improved rehabilitation results. 

Previous work has confirmed the potential of the use of an 
Human Robot Interaction (HRI) system to motivate users to 
perform physical exercise. Examples include a Pepper robot 
being used as a running coach [10], a Nao robot as a cycling 
instructor [11], and a humanoid robot as a motivator for high 
intensity interval training [12]. These studies point to the 
effectiveness of an embodied device in providing motivation 
during physical activity. However, they do not offer technical 
advice on a specific skill or provide  personalisation of 
behaviours to individual users. This study is the first of its kind 
to evaluate a Socially Assistive Robot (SAR) in the context of 
training for squash, or any other skill-based sport (as opposed to 
fitness training). In the rehabilitation domain, robots have also 
been considered as rehabilitation coaches, both for children with 
cerebral palsy [13], and for stroke survivors [14], [15]. Although 

these studies present promising results, low participant numbers 
in [15] and short-term interactions in [14] indicate that more 
research is required, particularly with regards to lifelong 
learning and personalisation which these studies did not 
investigate. 



 

 

Robotic systems employing strategies intended to build the 
relationship between the user and the robot (e.g. by using 
continuity behaviours, and the user’s name) have been preferred 
by users over systems that are purely functional [16]. It has been 
suggested that both high-level personalisation to groups of users 
and low-level adaption to individuals is required in a robotic 
coach [4]. 

One promising method of achieving high-level 
personalisation is to learn from human demonstrations. In a 
collaborative packing task, Nikolaidis et al. showed that by 
clustering human demonstrations into similar styles and 
applying inverse reinforcement learning over these clusters, it 
was possible to learn a reward function that was representative 
of each user type [17]. In our current work, we focus on high-
level personalisation. We have applied a similar strategy to the 
more interactive, open scenario of coaching. Previous work with 
domain experts [18] has formalised 12 coaching policies using 
Nikolaidis et al.’s clustering algorithm. Our robotic coach can 
select from these 12 policies based on its user’s information and 
training context (see Section III), thus achieving high-level 
personalisation. 

To the author’s knowledge, this is the first attempt to 
evaluate a system capable of personalising its coaching 
approach to different  user types in these contexts. Although we 
do not specifically focus on lifelong learning in this paper, Silva 
and Gombolay [19] show that a similar method of encoding 
domain knowledge can (in their non-interactive scenario) 
provide a starting point for a Reinforcement Learning (RL) 
algorithm to further adapt the system’s behaviour to individual 
users. Some possible methods to tackle this problem in the 
context of our work are discussed further in Section VI. 

III. SYSTEM DESCIPTION 

A full description of the system implementation is out with 
the scope of this paper, but an overview is given here. 

The system (implemented on the Pepper robot) provides 
coaching to users during practice/exercise sessions through the 
selection of appropriate actions (examples shown in TABLE I) 
from its chosen coaching policy. These policies are taken from 
Ross et al.’s work [18]. In that work, the authors combine data 
collection methods adapted from sports coaching literature with 
computational techniques and mathematical modelling to define 
a process used to formalise human knowledge in the form of 
‘coaching policies’. They also give suggestions on which of the 
policies were likely to be more appropriate for users with 
different traits [18]. Using observations of Human-Human 
Interactions (HHIs), they first obtained action sequences of 
behaviours exhibited by professional squash coaches and stroke 
physiotherapists. These were primarily the same behaviours as 
used by our robotic coach and shown in TABLE I. They then 
clustered these action sequences into ‘behaviour graphs’. Each 
graph is a visual representation of a coaching policy and can be 
viewed by following the link in the footnote1. Next they obtained 
coaches’ and physiotherapists’ reflections on the graphs’ 
applicability to the real world and appropriateness for different 
training contexts and user information. The policy used by our 

 
1Visualisations of the coaching policies used by our robotic system can be 
found at: https://github.com/M4rtinR/BehaviourGraphVisualisations  

robotic coach is selected from one of the 12 policies learned in 
[18] based on the following user information: squash playing 
ability or effects of stroke (self-provided), number of sessions 
performed with the robotic coach (i.e. length of the relationship), 
motivation for training (self-rated), and type of session. The 
policies used are derived from both coaching and rehabilitation 
data, so they should be generalisable across these two use cases. 

The robotic coaching system was implemented on a Pepper 
robot using Pepper’s Python SDK. In the squash setting, it 
communicates with a sensor attached to the user’s squash racket, 
via a commercial mobile application, to track the player’s swing. 
To track a user’s movements in the rehabilitation setting, a 
vision system incorporating OpenPose [20] with the video 
footage captured through Pepper’s head-mounted depth camera 
was implemented. Sessions are comprised of either sets of shots 
played (squash) or exercises performed (rehabilitation) by the 
user. By performing a range of coaching behaviours similar to 
those performed by a human coach/physiotherapist, the robot 
leads its user through their training session. Behaviours are 
primarily animated utterances spoken by the robot (i.e. Pepper 
moves in a human-like way while speaking), but can also 
include demonstrations via the robot’s movements. For 
example, the robot might perform a pre-instruction behaviour, 
praise, or a post instruction behaviour while demonstrating the 
correct arm position for the player’s racket preparation or 
starting point for a specific exercise. After receiving data from 
the sensor/vision system, the chosen coaching policy generates 
an appropriate action to be performed by the robot. These 
actions are grouped into 13 behavioural categories (shown in 
TABLE I) and are combined to coach a user through their solo 
practice session. 

TABLE I.  THE 13 BEHAVIOURAL CATEGORIES THE ROBOT CAN SELECT 

FROM. 

Category Example 

Pre-Instruction “In the next set, let’s make sure on every shot 
you play your racket face stays open as you 

strike the ball.” 

Concurrent Instruction 

(Positive) 

“Racket up” 

Concurrent Instruction 

(Negative) 

“Your racket’s not high enough.” 

Post Instruction 
(Positive) 

“Your racket preparation got better in that 
practice which was great! You got an average 

score of 79 and were aiming for 84.” 

Post Instruction 

(Negative) 

“Today, your follow through didn’t manage to 

improve. You got an average score of 0.17 and 
were aiming for 0.12.” 

Questioning “How did your forehand drive feel there?” 

(The user would respond using the touch 
sensors on the robot’s head and hands.) 

Positive Modelling Demonstrates correct arm position for racket 

preparation. 

Negative Modelling Demonstrates swinging the arm but stopping 
the follow through too quickly.  

First Name “Pepper” 

Praise “Nice!” 

Hustle “Big push!” 

Scold “That was a bad one” 

Console “Hard lines” 

https://github.com/M4rtinR/BehaviourGraphVisualisations


 

 

IV. HYPOTHESES 

Based on previous observation and interview studies by Ross 
et al. [18], and on the literature surrounding robotic coaching, 
we have made 4 hypotheses regarding the evaluation of our 
system and referring to the DSP (Data Selected Policy), NPP 
(No Personalisation Policy) and NCP (No Coaching Policy) 
conditions defined in Section V B. We expect that using a 
participant’s information and training context for high-level 
personalisation by selecting the most appropriate policy will 
outperform a data-based policy that isn’t personalised, and 
exercise without any coaching.  

H1. Participants will make greater improvements in 
technique/have a higher exercise completion rate in the DSP 
condition than in the NPP and NCP conditions. 

H2. Participants will view the DSP condition as a more 
effective coach than the NPP and NCP conditions. 

H3. Participants will be more motivated to conduct 
individual exercise when using the DSP condition compared to 
the NPP and NCP conditions. 

H4 (Squash). Participants will view the DSP condition as 
more socially competent than the NPP and NCP conditions. 

H4 (Rehab). Participants will have a lower perceived 
cognitive and physical workload in the DSP condition than in 
the NPP and NCP conditions. 

V. SHORT-TERM STUDY PROCEDURE 

A. Participants 

Two separate within-subjects studies will be run to evaluate 
the hypotheses (H1 – H4) given in Section IV. One has recently 
concluded (although the results have not yet been analysed) and 
involved non-professional squash players and the other will 
begin soon with stroke survivors. We had 16 participants 
complete all 3 sessions from our squash study and are aiming for 
a similar number of stroke survivors in our upcoming study. 

B. Conditions 

In both studies, three conditions will be evaluated. In the 
Data Selected Policy (DSP) condition, participants will interact 
with the robot executing the policy chosen using the method 
described in Section III. In the No Personalisation Policy 
(NPP) condition, the robot will execute a randomly selected 
policy from the other 11 policies that are not the best match for 
the participant’s user information and training context. 
Comparing these two conditions will allow us to discover the 
effect of the high-level personalisation derived from choosing 
an appropriate policy, compared to a randomly selected policy. 
The selection of the random policy will be performed at the 
beginning of the interaction. A No Coaching Policy (NCP) 
baseline condition will also be used in which the robot will tell 
the user which shot/exercise to perform and when to perform 
each set of shots/exercises. No coaching behaviours will be used 
by the robot in this condition. It is therefore the closest condition 
to a regular solo practice session in squash or individual exercise 
session in rehabilitation. 

A within-subject design will be used in both studies, with 
each participant interacting with all three conditions for 15-30 

minutes each. The three interactions will be split across two 
different days (see subsection D). The order in which 
participants interact with each of the three conditions will be 
counterbalanced. 

C. Measures 

The following measures will be used in both studies to gather 
appropriate data to evaluate our hypotheses: 

a) The “technical skills” subscale of the Coaching 

Behaviour Scale for Sport (CBS-S) [21] will be used to measure 

participants’ subjective opinions on the coaching provided by 

each robot condition, allowing evaluation of H2. The wording 

will be adapted slightly for use in rehabilitation.    

b) The interest/enjoyment, perceived competence, 

perceived choice and value/usefulness subscales of the Intrinsic 

Motivation Inventory (IMI) [22] will be used to assess the effect 

of each condition on the participants’ intrinsic motivation for 

conducting individual exercise with the robot, thus allowing the 

evaluation of H3. 

c) Exercise/Shot statistics: As described in Section III, a 

sensor mounted on the end of the participant’s racket will 

provide a score for each shot played in the squash sessions. In 

the stroke rehabilitation sessions, the number of completed 

repetitions of a given exercise will be used. Comparing these 

statistics will allow evaluation of H1. 

Additionally, in the squash study, the Robotic Social 

Attributes Scale (RoSAS) [23] will be used as a subjective 

measure of the social competence of the robotic coach to allow 

evaluation of H4 (Squash). H4 (Rehab) will be evaluated 

using the NASA Task Load Index (TLX) [24]. 

D. Study Design 

The squash study will take place on a hard-back squash court 
in the university’s sports centre. A squash racket with a sensor 
attached will be provided to all participants and sanitised 
between sessions. The rehabilitation study will take place in a 
laboratory on the university campus. All necessary equipment to 
complete the given exercises (e.g. cane, towel, water bottle) will 
be provided to all participants and sanitised between sessions. 

TABLE II shows an overview of the procedure to be used in 
the studies. Each participant will attend the facility on 2 separate 
days. This was deemed to strike the right balance between 
mitigating against fatigue and mitigating against self- isolation 
requirements of participants or mid-study COVID restriction 
changes. To further ensure fatigue does not play a role, on the 
second day participants will be given a minimum of 10 minutes 
break (squash study) or 45 minutes break (rehabilitation study) 
between sessions. 

The setup to be used during interactions in both sessions is 
shown in Fig. 1 and Fig 2. In all 3 conditions, the session will be 
coordinated autonomously by the robot. 



 

 

TABLE II.  SUMMARY OF THE PROCEDURE USED FOR EACH PARTICIPANT. 

 

 

Fig. 1. The squash experimental setup - the robotic coach was on court with 

the participant, acting autonomously. The researcher observed from the balcony 

so had a perspective similar to the one shown in this image. 

 

Fig. 2. The rehabilitation experimental setup – the robotic coach will be 
positioned in front of the participant, who will be seated next to a table (required 

for some of the exercises). 

VI. FUTURE WORK (LIFELONG LEARNING FOR 

PERSONALISATION) 

Much of our work to this point has focussed on high-level 
personalisation to groups of users during short-term interactions. 
However, we also plan to include low level adaption to 
individual users so that our system can continue to personalise 
its behaviour to a user over the long-term to improve the 
interaction. Both squash training and recovery after stroke 
require consistent effort over a long period of time. Therefore 
personalisation using lifelong learning will be a key part of a 
successful system in both cases. 

A number of different methods have been explored to 
achieve continued personalisation of a robot’s actions. For 
example, using RL to personalise the teaching behaviours of a 
robot has been shown to result in higher levels of positive 
valence towards the robot [25] and more effective teaching [26]. 
This is a promising method of low-level adaption to individuals 
within sessions and throughout the life of an interactive system.  

A key challenge in our work (as with many RL applications) 
will be choosing an appropriate reward function. Previous work 
[25] has used a facial expression analysis system to measure 
children’s valence and engagement in a second-language 
learning task and based the reward function on these factors to 
achieve personalisation. Another work [26] instead utilised a 
user performance parameter as the basis of the reward function. 
The details of the implementation for our system are still being 
considered but previous works such as these indicate that our 
system could continue to improve and adapt over an extended 
period of time. 

VII. CONCLUSION 

Personalisation of a robotic coaching system could provide 
extra motivation for non-professional squash players and people 
recovering from a stroke during individual exercise. We have 
presented our method for high-level personalisation of a robotic 
coach usable in both domains, as well as discussing how an RL 
algorithm could be used for lifelong learning to further adapt the 
behaviour of such a system to individuals over the long term.  
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