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ABSTRACT
Robots are increasingly being developed as assistants for household,
education, therapy, and care settings. Such robots need social skills
to interact warmly and effectively with their users, as well as adap-
tive behavior to maintain user interest. While complex emotion
models exist for chat bots and virtual agents, autonomous physical
robots often lack a dynamic internal affective state, instead display-
ing brief, fixed emotion routines to promote or discourage specific
user actions. We address this need by creating a mathematical emo-
tionmodel that can easily be implemented in a social robot to enable
it to react intelligently to external stimuli. The robot’s affective state
is modeled as a second-order dynamic system analogous to a mass
connected to ground by a parallel spring and damper. The present
position of this imaginary mass shows the robot’s valence, which
we visualize as the height of its displayed smile (positive) or frown
(negative). Associating positive and negative stimuli with appropri-
ately oriented and sized force pulses applied to the mass enables
the robot to respond to social touch and other inputs with a valence
that evolves over a longer timescale, capturing essential features
of approach-avoidance theory. By adjusting the parameters of this
emotion model, one can modify three main aspects of the robot’s
personality, which we term disposition, stoicism, and calmness.
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1 INTRODUCTION
Robots may soon join our daily interactions as home assistants,
companions, educational tutors [10], and therapy aids [20]. While
meeting a new robot is often exciting, its novelty can wear off
quickly [14]. It is important for such robots to maintain user interest
over a sustained period of time in order to maximize the benefits
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of their use, such as completing an educational game series [22] or
a physical therapy regimen.

One effective way to promote long-term human-robot interac-
tion (HRI) is to create robot behaviors that mirror aspects of human-
human interaction [3]. In particular, robots can convey emotions
during social interaction to increase their perceived naturalness (i.e.,
how similar the robot’s behaviors are to what the user expects), at-
tentiveness (i.e., how much the robot detects its environment), and
engagement (i.e., how it reacts to the detected input) [5]. In many
user studies, the robot is controlled by a human operator to provide
fast and appropriate emotional responses [12]. However, teleoper-
ation is not a sustainable method of interaction for autonomous
robots. In other research approaches, either the robot’s affective
state (i.e., its simulation of emotion) is a fixed routine, regardless of
user interaction, or the robot’s affective state is instantly changed
by user action, usually to reward certain user behaviors [11]. These
approaches neither demonstrate situational awareness from the
robot nor adapt with the user, and therefore they may not promote
long-term interaction. While complex emotion models do exist,
they have been only partially implemented in robots [25] or have
solely been implemented with virtual chat agents [24]. There is
a clear need for a robust and customizable method that enables a
robot to produce dynamic emotion responses that are believable and
adapt with the interaction. Furthermore, the limited computational
resources available onboard mobile robots favor simple solutions.

We address this need by introducing a mathematical model for
the emotions of a robot undergoing short-duration external stimuli
such as physical contact, which could be pleasant, neutral, or aver-
sive. We represent the robot’s internal affective state over time as
the present position of a mechanical second-order dynamic system,
i.e., a mass connected to ground through a spring and damper in
parallel. Modifying the parameters of this model enables us to cus-
tomize specific attributes of the robot’s personality so that it can
emotionally respond to the same series of stimuli in substantially
different ways. This approach produces a robot that can react to
external stimuli over long periods of time, producing a smooth emo-
tional response that is more realistic and dynamic than previous
hard-coded representations.

In the remainder of this paper, we highlight related work in Sec-
tion 2, we explain the mathematical model of our emotion response
system in Section 3, and we discuss its future potential in the fields
of robot personalization and adaptivity in Section 4.

2 RELATEDWORK
2.1 Adaptation and emotion in social robots
Robots can use adaptive behavior to maintain user engagement and
be perceived as intelligent social agents [22, 26]. Beyond adapting its
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behavior, a robot can also display emotions to make the user aware
of its internal state, to reinforce a user’s action, or even to guide the
user to a goal behavior [3]. For example, the robot seal PARO coos
pleasantly in response to gentle touches, and it cries when handled
with a high level of force [1]. Emotional display directly improves
user interaction: children reacted more expressively and positively
toward a NAO with a teleoperated emotion model than with its
non-emotive counterpart [27]. The autonomous Roboceptionist by
Kirby et al. used emotions, moods, and long-term attitudes toward
repeat visitors (identified by a swipe of their university ID cards)
during chat-based interactions [13]. Users significantly changed
their interactions with the robot based on its mood, hinting at the
power of this capability for social robots.

Within the study of emotion usage for social robots, there has
been a strong focus on human recognition of and responses to static
robot emotions, rather than methods for building dynamic emotion
systems that change over time [4, 25]. This focus on static emotions
may be due to the fact that existing computational emotion models
are complex, multi-faceted, and difficult to translate to a different
robotic platform. There is a need to develop emotion systems that
allow for the easy adjustment of personality parameters, demon-
stration of the internal affective state over increasingly long time
scales, and usability across a variety of robotic systems.

2.2 Existing computational emotion models
Ojha et al. provide a thorough review of existing computational
models of emotion from the last two decades [19]. However, several
of these models have been implemented with virtual agents [23]
rather than on physical robots, and they typically focus on providing
lifelike visual responses to text- or chat-based input [2, 8], which
are complex and highly cognitive. Some models utilize machine-
learning approaches, such as a Gaussian mixture model [15] or a
series of neural networks [6], to recognize and reproduce the user’s
emotional cues or otherwise adjust the robot’s affective behavior.

The TAME Framework by Moshkina et al. [18] aimed to create
an affect model for physical robots composed of traits (T), attitudes
(A), moods (M), and emotions (E). Each of these four categories is af-
fected by both internal and external factors over varying time scales,
with fundamental traits remaining constant over time, attitudes
changing very slowly, moods changing over the course of a day, and
emotions changing quickly in reaction to immediate stimuli. Two
proof-of-concept user studies with partial implementations of the
framework showed preliminary success, with the traits and emotion
components enabled in the dog-like robot AIBO [17] and a simple
demonstration of mood and emotion enabled in the humanoid ro-
bot NAO [16]; however, the existing equations for the individual
categories are complex, and no code is provided for replication or
adaptation by other researchers. Thus, inspired by the TAME frame-
work, we sought to create an efficient mathematical model in which
emotional state is affected by internal and external factors across
multiple time scales and that is easy to implement on real robots.

2.3 Approach-avoidance theory
To facilitate high-quality HRI, we aimed to develop a robot emotion
model that is rooted in behaviors that can be observed in nature. Ap-
proach–avoidance theory is a well-validated theory in psychology

which states that when an organism receives a positive stimulus
(i.e., something which supports survival), it feels a positive emotion,
which motivates approach behaviors, such as lifting arms and coo-
ing for a baby. A negative stimulus (i.e., something which hinders
survival) elicits a negative emotion and motivates the organism to
avoid and withdraw [9].

Furthermore, approach-avoidance theory explains that intense
emotional responses tend to be bi-phasic: if a very negative stimulus
is presented and then removed, the emotional state not only returns
to neutral, but also temporarily springs up to a positive state [7].
Conversely, the removal of a very positive stimulus can result in a
negative mood. For example, a person might feel negative emotions
while they are sick or injured.When they are healthy again, they not
only no longer feel negative, but they also feel even more positive
and more appreciative of their good health than they did before the
illness began. This pattern suggests that a robot’s emotional state
should have this property of bouncing back beyond neutral after
spending a longer duration of time either positive or negative.

By using an emotion model consistent with approach-avoidance
theory, robots can produce naturalistic responses during social
interactions, which is especially important for robots in heavily
social roles such as a peer-like tutor, an empathetic caretaker, or an
attentive animal companion.

3 MATHEMATICAL EMOTION MODEL
Dynamic systems describe how natural phenomena evolve over
time, such as the flow of water through pipes or the population of
a community. Since such dynamics can easily be computed over
time, they are a natural choice for a robot emotion model.

Widely used in psychology and HRI, Russell’s Circumplex of
Affect describes emotions across a continuous scale in two dimen-
sions [21]. The first dimension, valence, refers to the positive or
negative feeling of the emotion, and the second, arousal, refers
to its energy level. We currently focus on modeling the valence
dimension of a robot’s emotional state over time; it can take any
value between -100 and 100. For visualization, we draw the valence
as the height of the robot’s mouth. At maximum positive valence
the robot has a perfect concave-up semicircle for a smile, and the
inverse is true for maximum negative valence.

3.1 Appropriate model order
Different natural phenomena can be best represented by dynamic
systems of varying orders; we explore their suitability for HRI in
Fig. 1. Simple reactions, where the robot’s affective state is a single
response instantly called by the user’s action, can be represented
as a zeroth-order system. The output (here, the robot’s valence)
is proportional to the input (the external stimulus); a mechanical
analogue is a linear spring with no mass or damper, which deflects
as soon as a positive or negative force is applied. However, as noted
in approach-avoidance theory, adding or removing a stimulus does
not cause only a single, instantaneous, hard-coded response – rather,
it also causes the organism’s internal state to be propelled toward
a more-lasting mood. Therefore, a zeroth-order system is not the
best way to represent natural emotions.

A first-order mechanical system has stiffness and damping, but
it does not have mass. Therefore, it does not tend to oscillate. This
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Figure 1: Modeling a robot’s internal affective state using
dynamic systems of increasing orders. The − and + symbols
indicate negative and positive stimuli, respectively.

order of system can represent richer emotions than a zeroth-order
system because it maintains some memory of past experiences over
time. As depicted in Fig. 1, we need a second-order system to have
the oscillation feature described in approach-avoidance theory.

3.2 Second-order dynamic system
The robot’s valence is modeled as a linear second-order dynamic
system with a point mass, a spring stiffness, a rest length for the
spring, and damping (energy dissipation). The mass’s position along
the 𝑦-axis represents the robot’s current affective state. External
stimuli, such as visual user gestures, user dialogue, or touch contacts
like petting or hitting, cause positive or negative force pulses that
act on themass and evoke an immediate emotional reaction from the
robot. Furthermore, these pulses propel the mass along the 𝑦-axis
and therefore also change the robot’s mood over time. Importantly,
these stimulus events influence the affective state toward a certain
direction, but they do not teleport the robot instantly to a different
affective state. This approach provides the robot with emotional
memory, and its behavior is influenced by the entire recent history
of interactions it has experienced.

A diagram of the mass-springer-damper system we use to rep-
resent the emotion model can be seen in Fig. 2. Using Newton’s
second law, the sum of the forces currently acting on the mass,𝑚,
can be related to the mass’s instantaneous acceleration, ¥𝑦, as:

𝐹𝑠 + 𝐹𝑑 + 𝐹𝑝 =𝑚 ¥𝑦, (1)

where 𝐹𝑠 represents the force applied by the spring, 𝐹𝑑 is the force
applied by the damper, and 𝐹𝑝 is the fixed-duration force pulse
currently being generated by external stimuli, if any exist. To show

k b y(t)

m

L
k b y(t)

m

L

Rest (ẏ = 0)
Fp

Figure 2: Our emotion model can be represented as a mass-
spring-damper system. We illustrate its properties both at
rest (left, 𝑦 (𝑡) = 𝐿) and when past force pulses have moved
the mass away from its neutral position (right, 𝑦 (𝑡) > 𝐿).
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Figure 3: The height of the robot’s smile or frown directly
corresponds to the internal valence. Blue squares indicate
the valence that corresponds with the picture above it.

linear stiffness and damping, this equation can be expanded out as:

−𝑘 (𝑦 − 𝐿) − 𝑏 ¤𝑦 + 𝐹𝑝 =𝑚 ¥𝑦, (2)

where 𝑘 is the spring constant, 𝑦 is the position of the mass, 𝐿 is the
mass position where the spring exerts no force, 𝑏 is the damping
coefficient, and ¤𝑦 is the mass’s velocity. Finally, this equation can
be rewritten in the form of a second-order differential equation as:

¥𝑦 + 𝑏

𝑚
¤𝑦 + 𝑘

𝑚
(𝑦 − 𝐿) =

𝐹𝑝

𝑚
. (3)

In the absence of force pulses, and assuming 𝑏, 𝑘 , and𝑚 all have
positive values, the mass will always return to the position 𝐿, pulled
there by the spring, with oscillations calmed by the damping.

We provide a demonstration of our system in Fig. 3, where one
can see the internal emotion level of the robot over time. In this
example, a small illustration of a robot face changes in real time
simultaneously as the graph is plotted; we show the robot’s expres-
sion at eight timestamps. Though facial expression is convenient,
a robot could use many other approaches to display its present
valence level, such as ambient color, body posture, and sounds.

3.3 Customizing the robot’s personality
We can adjust selected parameters to customize how the robot’s
emotional state changes in response to stimuli. First, we can calcu-

late the natural frequency of this second-order system as𝜔𝑛 =

√︃
𝑘
𝑚 .

We can then determine whether the system is over-, under-, or
critically damped by calculating its damping ratio as Z = 𝑏

2𝑚𝜔𝑛
.

A robot with an overdamped emotion model (Z ≫ 1) may appear
non-responsive, whereas one that is too underdamped (0 ≤ Z ≪ 1)
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Figure 4: In each subplot, one parameter is changed to show-
case how the robot’s response to stimuli can be customized.
All graphs use𝑚 = 1kg, 𝐹𝑝 = 30N, and pulse duration𝑇 = 1.0 s.
The middle blue trial is the same for all three subplots.

will experience large oscillations in its affective state and may ap-
pear erratic. As a small amount of oscillation is needed to mimic
the bi-phasic response observed in approach-avoidance theory, we
are most interested in damping ratios close to 1.

Depending on how the parameters of the emotion algorithm are
tuned, the robot can display different personalities and responses.
To display the versatility of this approach to modeling robot emo-
tions, we present a fictional scenario in which a user interacts with
a robot over the course of one minute. Fig. 4 shows the robot’s
affective state in response to the described touch inputs. Each of the
three subplots highlights how increasing and decreasing the value
of a single parameter affects the robot’s response. We provide a
baseline parameter setting (the middle trial) that is identical across
all three graphs. The user starts by stroking the robot three times
(at 5 s, 10 s, and 15 s), which the robot perceives as positive touches.
Then user then tries tickling the robot’s feet (at 30 s and 32 s). The
robot reacts negatively. Once the user realizes the robot didn’t like
this interaction, they attempt to console the robot by petting its
head (at 41 s), to which the robot reacts positively.

We encourage the reader to carefully study Fig. 4 to see how the
robot’s reactions in this story change as each parameter is adjusted.
For example, the value of the spring rest length 𝐿 determines the
default valence to which the robot will always return. We associate
this parameter with the robot disposition; setting a positive 𝐿
creates a positive robot, whereas a robot with a negative 𝐿 will have
a negative valence when left alone. As we keep the mass constant,
changing the natural frequency𝜔𝑛 adjusts the stiffness of the spring,
which dictates how much the valence changes for the same input,
as well as how quickly the system oscillates. We call this term robot
stoicism – how strongly a robot resists reacting to external stimuli.

A higher𝜔𝑛 leads to amore stoic robot, whereas a robotwith a lower
𝜔𝑛 reacts more and takes longer to return to its default 𝐿. Finally,
the damping ratio Z calms oscillations in the affective state of the
robot and by extension controls robot calmness. An underdamped
system produces a robot whose mood shifts dramatically and who
appears to overreact, whereas an overdamped system produces a
robot who appears calm and measured.

4 FUTUREWORK
We believe that this simple second-order model provides a powerful
tool for simulating robot emotions and can be used to render a range
of personalities for social robots. However, one can investigate even
more concepts than what we have introduced here.

One could modify how external stimuli generate force pulses
upon the system. For example, the sample touch stimuli we showed
had the same magnitude for each of their force pulses. However,
different stimuli could provide different magnitudes of force pulses.
In the case of social touch, the force pulse generated could be
a function of the type of social touch detected, the location on
the body, and the amount of physical force applied by the user.
Additionally, one could change the robot’s internal reaction to
external stimuli based on its current valence or the interaction
context. For example, a robot that currently has a negative valence
could react negatively to an ambiguous stimulus (e.g., tickling),
while it could react positively to the same stimulus when at a
positive level.

We used a dynamic smile to visualize the robot’s valence, but
other expression modalities could also be used. For example, we
will conduct a study in which a NAO robot uses our emotion model
in comparison to zeroth-order and first-order models to react to
various social touches. Our NAO will embody its affective state
using body posture and movement, and it will respond to touches
using gestures (e.g., cheering movements or covering its face) and
vocalizations. Participants will rate how lifelike, engaging, and
appealing NAO appears in each condition.

Our model currently represents only the robot’s valence; one
could add a second axis with its own dynamics to represent the
robot’s arousal. Each stimulus could then influence both valence
and arousal in positive, negative, or neutral ways, providing a po-
tentially powerful platform for generating interesting social inter-
actions over time. Furthermore, an operator could manually tune
the robot’s disposition, stoicism, and calmness over time to update
the robot’s behavior for personalized interaction. Alternatively, the
model parameters could adapt automatically based on the user’s
interaction history. For example, a robot that consistently received
positive stimuli could shift from a neutral default disposition to a
positive one. Indeed, there are many avenues that can be explored
by using this adaptable and accessible emotion model. Having a
robot react to external stimuli in a customizable way has the po-
tential to provide a plethora of new experiences for human-robot
interaction.
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