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ABSTRACT
The ability to continually learn is crucial for robots designed towork
with and around people. But as robots execute their tasks while
improving through interactions with users, they will likely exhibit
a wide range of behavior in response to novel situations. The way
robots handle such situations has significant implications: robot
behaviors may endanger or discomfort humans, robot task perfor-
mance may drop, and robots may even experience catastrophic
failures. Besides these immediate implications, such situations have
longer-term impact on users whose trust to and expectations from
robots are reshaped, resulting in overcautious or unnatural future
human reactions to future robot behaviors and eventually hinder-
ing robot acceptance. In this paper, we discuss insights and lessons
learned from the process of developing systems to support smooth,
long-term deployments of mobile robots in real-world environ-
ments as they continually improve from interactions with users.

1 INTRODUCTION
The long-term deployment of robots in human environments gives
rise to repeated and prolonged interactions with users that in-
fluence and shape robot acceptance. There is a long discussion
on understanding the mechanisms underlying technology accep-
tance [2, 8, 36]. One of the most widely referenced models of accep-
tance is by Davis [8] who highlighted that the dominant predictors
for the acceptance of any technology are its perceived usefulness
and its perceived ease of use. From a robotics point of view, Beer et al.
[2] identified attributes such as robot function, social capability,
and appearance as crucial for the acceptance of a robot system.
For robots entering the workplace alongside human co-workers,
Wise [36] described the path towards robot acceptance as a series
of stages, starting from fear, and continuing with apprehension,
curiosity, tolerance, and finally satisfaction.

Motivated by these observations, we discuss models and algo-
rithms that may keep robots towards the path to satisfaction and
widespread acceptance. Specifically, we look at elements of au-
tonomous mobility, mechanisms for failure recovery, and models
for user perceptions.

Specifically for mobile robots, the path towards satisfaction re-
quires a series of considerations that will ensure high functionality
that is perceived and appreciated by the user without extensive
effort from the user’s part. These considerations include but are
not limited to human safety and comfort, the robustness of the
autonomy, and the implications of the autonomously generated
behavior for users and bystanders.
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Figure 1: Honda’s experimental ballbot [11] navigates next
to three users in our lab experiment [20].

2 ROBUST MOBILITY DOES NOT ALWAYS
REQUIRE COMPLEX MODELS

Many important real-world robotics applications involve the de-
ployment of mobile robots in dynamic and unstructured human
environments like homes, warehouses and hospitals. One influ-
ential system paradigm involves robots adapting their navigation
strategies online through lifelong interactions with their environ-
ment [24, 32]. However, to keep users safe and comfortable as robots
learn, they need a series of core capabilities, including mechanisms
for localization, human motion prediction, collision avoidance, and
human comfort among others. There is a long history of work across
these domains, with recent advances involving the use of complex,
large-scale, deep learning architectures demonstrating great per-
formance on familiar instances [29] but also poor generalization
and limited interpretability on others. In contrast, our experimental
insight is that simple, domain-driven models can provide a founda-
tion of performance that can be further finetuned online through
repeated interactions with users and the environment.

2.1 Crowd Navigation with Constant Velocity
Prediction

Social order in pedestrian navigation is often the result of coopera-
tion: humans tend to share responsibility for collision avoidance
and follow contracts for repair when things go wrong [37]. Roboti-
cists have embraced this viewpoint, developing algorithms that
support cooperative decision making in densely crowded human
environments [16, 19, 33, 38].

In our recent work [20], we described a formalism of passing
between two agents as a pairwise winding number. The absolute
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Figure 2: Our Kuri robot wandered a 28,000𝑓 𝑡2 floor for 4
days with minimal human help [23]. (a) Kuri’s coverage of
the building floor. (b) Photos of Kuri as it wandered in the
environment.

value of this number represents the passing progress whereas its
sign represents the passing side. Based on this representation, we
designed a cost function that when minimized results in actions ex-
pediting pairwise passing maneuvers. We integrated this function
within a model predictive controller (MPC) which additionally in-
corporates considerations of agents’ personal space and robot’s task
efficiency. Using a simple constant-velocity (CV) model as human
motion prediction, we deployed this MPC on a self-balancing robot
and extensively tested it in the lab under challenging crowd condi-
tions (see Fig. 1). Our experiments demonstrated that our approach
significantly outperformed a recent deep reinforcement-learning
based baseline in terms of Safety and Efficiency. Further, we found
that CV prediction [26] performs comparably to a recent state-of-
the-art motion prediction baseline (S-GAN) [10] across a range of
crowd behaviors including aggressive or inattentive agents.

While our could be further expanded through online model
improvements and adaptation to different environments and users,
its core navigation capabilities could enable a robust performance
threshold during the initial stages of deployment.

2.2 Localization-free Field Deployment
One of the challenges preventing the smooth prolonged deploy-
ment of mobile robots is the need for accurate localization. Despite
the important advances in simultaneous localization and mapping
(SLAM) [6] over the past few decades, robots deployed in indoor
environments are still prone to delocalization which may require
impractical workspace engineering and extensive human interven-
tions to address.

While localization remains an important skill for any robot,
there is a long-history of highly effective localization-free sys-
tems [3, 5, 13]. By wandering in space, such systems are capable of
completing a wide range of tasks, especially coverage-based, such
as vacuum cleaning [3] or patrolling. Inspired by their effectiveness,
we developed a wandering system which we deployed on a Kuri

robot [23]. Via Lidar and bump sensor readings our system gener-
ates a local costmap representing proximity to obstacles. It fixes
the direction of lowest cost and passes it for execution on a local
controller until it gets stuck due to some obstruction at which point
it updates its costmap to trigger the selection of a new direction. If
the robot gets stuck for a prolonged period, it initiates a recovery
procedure involving rotation in place and backing off. These be-
haviors were parametrized based on our environment and allowed
the robot to recover from typical failure modes such as getting
stuck on furniture or trapped with a tread off of a cliff. Despite its
simplicity, this system enabled the robot to navigate the massive
hallways of our academic building (area 28, 000𝑓 𝑡2) for four days
while requiring minimal human help.

While alternative tasks involving point-to-point navigationwould
require a localization system in place, our system can empower
robots with relatively weak compute and sensing features to per-
form practical coverage tasks. It could also serve as a navigation
mechanism to support data collection for building and updating
environment maps or for refining the robot’s localization system.
Finally, it could serve as a backup navigation system in cases of
failure of the main localization module.

3 BYSTANDERS CAN ENABLE SCALABLE
ROBOT RECOVERY

When autonomy inevitably fails, human help can be crucial for
robot recovery [7, 35]. Typically, researchers and engineers are
responsible for ensuring continued robot operation during studies
and field deployments. However, this paradigm may not always
be a scalable: while robots can deliver value on many important
applications, autonomy can be expected to be brittle and prone to
frequent failures. While some of the failures require high exper-
tise and close attention, many of the common failures could be
addressed with simple and quick actions (e.g., responding to a robot
question, shaking the robot to get it unstuck from a motion plan-
ning local minimum, pushing the robot to a new location, moving
the robot to its charger). Our insight is that for such types of fail-
ures, bystanders could enable scalable robot recovery. This insight
was discussed in earlier work [27, 28, 31, 35] but also motivated by
our experience deploying Kuri [23] in our academic building for
four days, as part of a user study (see Sec. 2.2). In the following
paragraphs we elaborate on some of the nuances of leveraging
bystander help.

3.1 Extended Operation via Human Help
Our study with Kuri involved the robot wandering the 2nd floor of
the Gates Center at the University of Washington (approximately
28,000𝑓 𝑡2), taking pictures of its surroundings and asking in real-
time users for feedback through a chatbot application deployed in
a department-wide digital workspace (Slack) [23]. To ensure good
coverage of the possible artistic themes present in the environments,
the robot needed to keep running throughout the workday. Thus,
we expanded the chatbot to message research team when it would
get physically stuck or when it would be low on battery, and added
a simple diagnostic tool streaming Kuri’s front camera feed. In case
something was wrong, a researcher would attend to the matter and
put the robot back to operation. These simple monitoring tools –in
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conjunction with the localization-free system discussed in Sec. 2.2–
enabled the robot to achieve a substantial coverage of the floor
(see Fig. 2a). Overall, the researchers did not spend more than 30’
helping the robot over the four full days (32 hours) of the study,
illustrating the practicality of enabling continued robot operation
through periodical, non-technical human help.

3.2 Effectively Soliciting Bystander Help
Soliciting help from a bystander is different than soliciting help
from a researcher dedicated to a study or engineering goal: a by-
stander typically has no clear incentive to help the robot. Thus, it is
important for the robot to reason about bystanders’ internal states
and context. For instance, a robot that asks for help too often or
at the wrong times might end up annoying users and quickly stop
getting help from them. Considering an office environment setting,
we developed a system that plans effective help requests based
on past interactions with users [22]. Specifically, we considered a
delivery robot that is tasked with visiting offices to deliver mail
while a human worker performs computer-repair tasks in the same
space. We modeled the robot’s task as a Bayes-Adaptive Markov
Decision Process (BAMDP) where the robot’s goal, expressed in
the reward function, is to maximize the number of offices it visits
while minimizing the number of human help requests it makes. The
transition function returns the probability of the user helping given
contextual factors (i.e., the human’s –assumed observed– busyness
and the frequency of past help requests) and individual factors
(i.e., the user’s latent helpfulness, estimated from past interactions
with them). The model was estimated using Generalized Linear
Mixed Models (GLMM) regression from a dataset collected in a
virtual office environment, created using the Phaser3 framework
(see Fig. 3). Through an evaluation user study, we found that our
system, integrating both individual and contextual factors signif-
icantly outperformed baseline systems (using help models using
either only contextual or only individual factors) in terms of ac-
crued rewards, while managing to generate more effective help
requests.

4 ROBOT MOTION CAN ADJUST USER
EXPECTATIONS

While robots are increasingly entering homes, airports, and streets,
users and bystanders often have limited mental models about how
robots make decisions. Naturally, users tend to make attributions
–often anthropomorphic– mapping robot behavior to possible ro-
bot capabilities, intentions, or internal states [30]. Robots driven
by purely functional objectives may complete their tasks but in
doing so, they may produce behaviors that confuse users or mislead
them about the robot’s capabilities and incentives. Prior work has
shown that integrating models of human inference into motion
planning may enable an observer to guess the robot’s goal [9], the
robot’s inability to complete its task [17], or aspects of style and at-
titude [15]. However, as the robot learns in the presence of humans,
its behaviors will also communicate global, long-term behavioral
attributes about its decision making mechanism, incentives, and
internal states. By managing the types of attributions that a robot
elicits from observers as it completes a task, it may manage users’
expectations, and shape their impressions as desired.

Figure 3: A user performs tasks in our virtual office envi-
ronment while a robot periodically asks them for help. In
this environment, we deployed and tested our system for
planning effective human help requests [22].
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Figure 4: Coding scheme used to analyze users’ impressions
during robot navigation experiments in the lab [19].

In the following paragraphs, we discuss how different navigation
algorithms elicit different user attributions, and how we can extract
context-specific attribution models to automatically synthesize ro-
bot behaviors that elicit desired user impressions.

4.1 User Impressions of Different Crowd
Navigation Strategies

To study human impressions of different robot navigation strate-
gies, we developed a fictional factory setting mockup in the lab,
where three users navigated between a set of machines to perform
maintenance tasks while one robot was moving around inspect-
ing their work [19]. This setting allowed us to motivate complex
navigation encounters between the users and the robot while ensur-
ing natural human walking. Considering a within-subjects design
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Figure 5: Robot trajectories that communicate desired at-
tributions generated by our trajectory optimization frame-
work [34]. Columns indicate the type of attribution and rows
indicate the intensity of the attribution.

where conditions represented navigation strategies, we compared
users’ performance and correlated it with their self-reported im-
pressions. A highlight of our findings was that our algorithm (Social
Momentum [19], an algorithm designed to generate legible motion
in multiagent domains) enabled users to navigate with lower ac-
celerations next to our robot. Interestingly, this was reflected in
their open-form responses in which they often noted that our robot
was not noticeable, whereas baselines elicited responses referring
to violations of personal space or unpredictability of robot motion.
The coding scheme used to analyze users’ open-form responses
(see Fig. 4) is indicative of the range of human impressions when
interacting closely with mobile robots.

4.2 Shaping Users’ Impressions of Navigating
Robots

In the previous work, user impressions were a byproduct of robot
navigation strategies but not explicitly accounted for. To enable
robots to control for the types and intensities of attributions they
broadcast to human observers, we developed a data-driven method-
ology for mapping robot motion to attributions [34].

Considering a coverage navigation task (vacuum-cleaning ro-
bot) in a virtual home environment, we asked users to rate a wide
range of robot behaviors [1]. Through a factor analysis, we ex-
tracted a space of attributions that users typically made; these
were related to competence, curiosity, and brokenness. Through an
active-learning methodology, we guided additional data collection
steps that enabled us to train probabilistic models (Mixture Density
Networks) mapping robot motion to attributions that an observer
would make to describe it. Using these models, we developed a
trajectory optimization framework that balanced between the task-
related objective of coverage and the communicative objective of
eliciting a desired attribution from the user. Through an evaluation

user study, we demonstrated that our framework was able to au-
tonomously generate robot motion eliciting desired attributions of
desired intensity from users (see Fig. 5).

5 DISCUSSION
We discussed experimental insights extracted from our experience
developing models and algorithms meant to support long-term de-
ployments and lifelong learning [32] of interactive mobile robots
in indoor environments. These insights may be useful for guiding
users through a path towards satisfaction [36] and acceptance [2, 8]
as robots continue to improve through interactions with their envi-
ronment. However, many additional considerations must be made
to ensure safe, smooth, and effective mobile robot deployments
involving close-interaction settings:

Safety. Crucially, when interacting with users it is important to
develop safety assurances for the user as the robot learns. There
is an extensive body of work on approaches that directly address
aspects of safety in human-robot interaction [18] and relevant work
in safe reinforcement learning [4] that is relevant for real-world
deployments of continually learning robots.

Imperfect user feedback. While bystanders can be an effective
source of feedback for lifelong learning robots, it is important to
account for the fact that their feedback will often be imperfect and
even inaccurate. Recent work on the development of interactive
reinforcement learning could be applicable to enable robots to
reason about the quality of human feedback [12].

Social awareness. Understanding and reacting to the dynamic
social context of a complex environment like a pedestrian domain,
a warehouse or a hospital remains an open challenge. While aspects
like proxemics have been increasingly integrated in the design of
navigation algorithms [14], additional considerations must be made
including cultural and individual adaptation, and accommodation
of the requirements of the deployment domain.

Benchmarking. It is important that baseline policies deployed
in critical real-world domains are already sufficiently advanced be-
fore interacting with real users. Doing so requires mature validation
methodologies that capture critical aspects of real-world interaction.
While there have been efforts towards formalizing protocols for
the validation of social navigation policies [25], additional research
is required to develop realistic simulators, evaluation criteria, and
benchmark experiments design of realistic simulators but also the
definition of benchmark experiments [21].

Technological challenges. Many technological limitations get
in the way of smooth robot deployments. For instance, despite
the maturity of perception approaches for localization and people
tracking, robots frequently get delocalized and errors in human
pose estimates may give rise to unsafe maneuvers that are challeng-
ing to handle. Finally, there are several robot design challenges to
be addressed, including decisions on robot kinematics/dynamics,
degrees of freedom, and even anthropomorphism.
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