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Abstract—Long-term planning for robots operating in domes-
tic environments poses unique challenges due to the interactions
between humans, objects, and spaces. Recent advancements
in trajectory planning have leveraged vision-language models
(VLMs) to extract contextual information for robots operating in
real-world environments. While these methods achieve satisfying
performance, they do not explicitly model human activities.
Such activities influence surrounding objects and reshape spatial
constraints. This paper presents a novel approach to trajec-
tory planning that integrates human preferences, activities, and
spatial context through an enriched 3D scene graph (3DSG)
representation. By incorporating activity-based relationships, our
method captures the spatial impact of human actions, leading
to more context-sensitive trajectory adaptation. Preliminary re-
sults demonstrate that our approach effectively assigns costs to
spaces influenced by human activities, ensuring that the robot’s
trajectory remains contextually appropriate and sensitive to
the ongoing environment. This balance between task efficiency
and social appropriateness enhances context-aware human-robot
interactions in domestic settings. Future work includes imple-
menting a full planning pipeline and conducting user studies to
evaluate trajectory acceptability.

Index Terms—long term planning, 3d semantic scene graphs,
aware motion planning

I. INTRODUCTION

Long-term Human-Robot Interaction (HRI) aims to create
robots that continuously adapt their behavior by learning
from ongoing interactions with humans [1]. This capability
is essential for assistive robots operating in domestic envi-
ronments, where they must not only execute tasks but do
so in a way that is sensitive to human preferences. Effective
robot behavior in these settings requires understanding not just
spatial constraints but also the activities humans engage in and
how these activities influence the environment.

A fundamental challenge in such environments is motion
planning, which extends beyond simple obstacle avoidance to
ensuring socially appropriate navigation. Robots must account
for human activities and preferences, making decisions that
respect explicit instructions, such as “watch out for the glass
table; it could break,” and implicit contextual cues, such as
“don’t spill the glass of wine,” suggesting caution in the
navigation. For example, a robot performing a cleaning task
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Fig. 1. Overview of the method. Starting from a 3D map and its 3D scene
graph representation, our approach computes a preferred based trajectory
which is socially aware of the human presence in the scene.

should avoid obstructing the human’s line of sight while
watching television or interfering with their ongoing activities.
Achieving this requires a fine-grained understanding of human
behavior and its spatial implications.

This complexity is further amplified by static objects in the
environment, whose significance changes dynamically based
on human engagement. For example, if a person watches
TV, the space between them and the screen becomes socially
significant, requiring the robot to avoid passing through it
unless necessary. Similarly, an armchair that is currently
unoccupied differs in relevance from one actively used by a
human. These cases suggest the need for an approach that
evaluates an object’s relevance based on the human’s current
activities and involvement with it.

In the context of social navigation, this presents several chal-



lenges: balancing task efficiency with social appropriateness,
adapting to dynamic human behaviors, and ensuring long-
term generalization. Traditional motion planning in human-
shared environments primarily focused on respecting personal
space, but respecting social norms is equally important [2],
[3]. Moreover, as human activities continuously reshape the
environment, static objects take on varying importance [4],
[5], requiring robots to interpret these dynamics accurately.
Learning implicit human preferences over time adds another
layer of complexity, necessitating structured representations
that can store and infer relevant information [6], [7]. A
key challenge remains generalization, as models trained in
controlled settings often fail to transfer effectively to real-
world scenarios [8], [9].

To address these issues, we propose an approach that inte-
grates human preferences, activities, and spatial configurations
into a 3D scene graph representation. Unlike purely vision-
language-based models, which provide rich semantic under-
standing but lack structured spatial reasoning, 3D scene graphs
enable both real-time interpretation and long-term planning.
By capturing human activities as graph relationships, robots
can dynamically adjust their motion plans based on human
presence, ensuring socially aware navigation that respects both
the immediate and evolving context. This structured yet adapt-
able representation allows for more intuitive and personalized
human-robot interactions in shared environments, bridging the
gap between spatial reasoning and socially intelligent behavior.

II. RELATED WORK

A. 3D Scene Graph Resources

3D scene graphs (3DSGs) [10], [11] are designed for
robotics, featuring a hierarchical structure where nodes rep-
resent scene parts like rooms and floors. At the lowest level,
objects are connected by spatial (e.g., object1 is next to
object2) and comparative relationships (e.g., object1 is larger
than object2). Currently, only two datasets include 3D scene
graphs [11], [12], focusing on standardizing object classes via
WordNet [13]. However, they don’t incorporate active base
relationships, which are present in semantic inventories [14]–
[16]. These datasets are static, lacking human presence, which
limits robotic applications in dynamic, human-populated envi-
ronments. To address this, 3D Dynamic Scene Graphs [17]–
[21] have been introduced to account for dynamic scenes
and agents like humans. However, the focus has mostly been
on tasks like trajectory prediction and autonomous driving,
with limited exploration of reasoning over dynamic 3D scene
graphs.

B. Planning with 3D Scene Graphs

The 3D scene graph structure, often built on SLAM or
processed images and point clouds, is as powerful as any pre-
learned representation, making it ideal for robotics applications
like localization [22], [23], navigation [24]–[26], and planning
[27]–[31]. Planning typically involves using a large language
model (LLM) to interpret a text-based 3D scene graph with ob-
ject positions, bounding boxes, labels, and relationships. This

helps robots understand goals and plan tasks, such as moving
objects to reach their goal. A less explored but important area
is incorporating object affordances and attributes into decision-
making. For example, this could guide navigation to avoid
fragile objects or stepping on valuable surfaces like carpets or
clothes. Current 3DSG planners do not account for dynamic
agents and their interactions with the environment, limiting
their use to static scenes. This is suitable for environments
with minimal human involvement but inadequate for dynamic
settings like homes or offices.

C. Social Navigation

Social navigation is a broad research area that has evolved
significantly over the years. Early works primarily focused on
learning the social use of space through the lens of proxemics,
studying how humans naturally maintain spatial boundaries
and personal space [32]–[34]. A key advancement in the field
has been the incorporation of richer environmental represen-
tations, which allow robots to better understand and navigate
spaces in a socially acceptable manner [2], [3]. Approaches to
social navigation have been developed using both supervised
and unsupervised learning techniques [4]. The problem has
been explored in both outdoor [9] and indoor [8] settings,
with a particular focus on crowded spaces [5] and human-
robot encounters [35]. However, a persistent challenge across
these approaches has been generalization, ensuring that learned
behaviors remain effective across diverse environments and
interactions.

With the advent of LLMs and vision-language models
(VLMs), significant progress has been made toward richer se-
mantic understanding, enabling more complex robot behaviors
informed by contextual cues [36]. Early works identify navi-
gation targets [37], and recent advancements have focused on
using them to guide low-level navigation behaviors, ensuring
that robots adapt their movements in a socially appropriate
manner based on the specific scenario [38].

While LLMs and VLMs enhance contextual understand-
ing by capturing human presence and activities, they lack
an explicit, structured representation that supports long-term
planning. We foresee that this structure can be provided by
extending 3DSG representations to include humans and relate
them to their surroundings.

III. PROPOSED METHODOLOGY

A. Preliminary Considerations

We consider a scene represented by a 3DSSG as provided
in [12], where nodes correspond to objects in the environment
and edges define spatial relationships between them ( e.g.,
”on top of”, ”next to”, ”hanging on”). However, existing
3DSSG datasets lack human presence. As a preliminary step,
we manually introduce one or more humans into the scene
and integrate them into the scene graph based on their cho-
sen activities. This is done by creating a new node labeled
”human” and associating it with relevant objects through both
spatial and activity-based relationships. Spatial relationships
(e.g., ”sitting on”, ”standing next to”) define the human’s
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Fig. 2. Our proposed approach constructs an object-centric description of impact factors, considering both objects and spaces, through a human-centered
investigation of the scene. Starting from a 3D map, a trajectory, and a set of preferences, we: (a) extract the Partial 3D Semantic scene graph with objects
that could potentially impact the trajectory; (b) enrich the graph by incorporating the human and their activities, integrating with existing nodes into the 3D
scene graph; and (c) feed the enriched graph representation, along with the trajectory and preferences, into a Large Language Model (LLM). The LLM then
calculates for each object of interest a cost, combined with a clearance value, that describes how the cost decreases with distance.

physical interaction with the environment, while activity-based
relationships (e.g., ”reading”, ”watching”, ”speaking”) capture
contextual interactions with objects. The result is a 3DSSG
that integrates human presence.

B. Planning Appropriate Trajectories

We define the problem of trajectory planning in a shared
human-robot environment as a scenario where the robot must
navigate from a starting point (A) to a goal point (B) while
accounting for human activities that may impact the scene.
Additionally, the robot may be provided with explicit or im-
plicit preferences that it must incorporate during the planning
process.

Given the 3DSSG, along with the robot’s task, starting and
goal points, and relevant preferences, the robot’s objective is
to plan a trajectory that aligns with these preferences and is
appropriate for the human presence and activities within the
environment.

Given a trajectory, which consists of a set of waypoints de-
scribed by T = {p1, p2, p3, . . . , pn} for i = 1, 2, 3, . . . , n
where n is the total number of waypoints along the trajectory,
we investigate the potential objects that could impact the
trajectory. This is done by searching within a defined radius
around each waypoint along the trajectory, which can be ad-
justed as needed, as shown in Fig. 2. Once the relevant objects
are identified, they are processed, and the following description
is generated for each object. Each object is represented by:

• ‘‘object_id‘‘: the id of the object
• ‘‘object_tag‘‘: the label of the object
• ‘‘bbox_center‘‘: centroid of the 3D bounding box

for the object

• ‘‘bbox_extent‘‘: extents of the 3D bounding box
for the object

• ‘‘affordances‘‘: The set of the affordances of the
object

• ‘‘attibutes‘‘: The set of the attributes of the object
• ‘‘relations‘‘: a set of tuples (name of
relation, tail entity)

Consequently, the Partial 3DSSG, enriched with the hu-
man’s information, the trajectory and the preferences are
inputted to an LLM which is responsible to return for each
relevant object a cost and a clearance. The cost is a value equal
or greater than 1 (1 if no impact at all), and reflects the impact
factor of the object in the trajectory, while the clearance is a
value equal or greater than 0 ( 0 if no impact at all) and acts
as a diminishing factor for the cost, reducing the impact as the
robot moves farther from the object. This ensures that the robot
adjusts its trajectory based on both the proximity to objects
and human preferences, maintaining safety and efficiency.

The computed costs and clearances can be integrated into
a cost-based planner to generate an optimal, yet human-aware
trajectory. Since these values reflect activity-based influences
and spatial relationships, the resulting trajectory would inher-
ently respect human presence and preferences. Our approach
focuses on cost assignment via an LLM, while planning
remains an extension.

IV. PRELIMINARY FINDINGS

We evaluated our approach using the scene shown in Fig.
2, where a human was manually placed in the scene, sitting
on the bed and watching TV. The costs of the relevant
nodes along the trajectory were extracted, focusing on the
following objects: bed, human, armchair. We compared our



approach—incorporating human information and both spatial
and activity-based relationships—against two baseline plan-
ners: one using the 3DSSG without human information, and
another using the 3DSSG with human information but exclud-
ing activity-based relationships. The preliminary results are
presented in Table I.

TABLE I
TABLE TYPE STYLES

Cost (Clearance)∗
Bed Human armchair

No Human 1 (0.5) - 2 (1.5)
Human w/out relations 2 (0.5) 10 (2) 3 (1)
Human∗∗ w/ relations 3 (1.5) 5 (2) 1 (0)
∗Preference: Don’t disturb anyone watching a football match
∗∗The human is sitting on the bed, watching TV.

TABLE II
THIS TABLE SHOWS THE COSTS AND CLEARANCE OF THE NODES

BED,HUMAN, AND ARMCHAIR FOR THE TRAJECTORY SHOWED IN FIG. 2,
GIVEN THE HUMAN POSITION AND PREFERENCES

In this scenario, the human is sitting on the bed and
watching TV. Notably, without considering activity-based re-
lationships, the armchair is assigned an unnecessarily high
cost, despite no one occupying it. This occurs because, without
relational context, the system cannot infer that the human is
already seated elsewhere. When relations are incorporated, the
cost of the armchair is minimized, as the system recognizes
that the human is sitting on the bed instead. Although the
human’s cost decreases from 10 to 5 when relations are
considered, it remains high, with the same clearance value,
meaning that the planner’s behavior would be unaffected.

V. CONCLUSION

In this work, we explored how augmenting 3D scene
graphs of static scenes (without dynamic agents) plays a key
role in formulating plans that are socially aware of human
behaviors and produce results that would otherwise be im-
possible without human-centered considerations. To evaluate
this, we manually generated new 3D scene graph structures,
placing humans in coherent relationships with objects in the
scene, and observed how an LLM-based planner adapts under
these conditions. In future extensions of this work, we aim
to integrate the computed costs into a planner to generate
trajectories and evaluate their effectiveness. Additionally, we
plan to conduct a user study to assess the acceptability of these
trajectories by comparing our approach with baseline methods.
Participants will evaluate the generated trajectories in context,
providing insights into human preferences and the perceived
social appropriateness of different planning strategies. This
approach lays the foundation for integrating 3D scene graph
relationships into planning, enabling more context-aware and
socially intelligent robot navigation.
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ada, and Wolfram Burgard. Hierarchical open-vocabulary 3d scene
graphs for language-grounded robot navigation. In Robotics: Science
and Systems XX, RSS2024. Robotics: Science and Systems Foundation,
July 2024.

[27] Yuchen Liu, Luigi Palmieri, Sebastian Koch, Ilche Georgievski, and
Marco Aiello. Delta: Decomposed efficient long-term robot task plan-
ning using large language models, 2024.

[28] Christopher Agia, Krishna Murthy Jatavallabhula, Mohamed Khodeir,
Ondrej Miksik, Vibhav Vineet, Mustafa Mukadam, Liam Paull, and
Florian Shkurti. Taskography: Evaluating robot task planning over large
3d scene graphs, 2022.

[29] Krishan Rana, Jesse Haviland, Sourav Garg, Jad Abou-Chakra, Ian Reid,
and Niko Suenderhauf. Sayplan: Grounding large language models using
3d scene graphs for scalable robot task planning, 2023.

[30] Zhirui Dai, Arash Asgharivaskasi, Thai Duong, Shusen Lin, Maria-
Elizabeth Tzes, George Pappas, and Nikolay Atanasov. Optimal scene
graph planning with large language model guidance, 2024.

[31] Aaron Ray, Christopher Bradley, Luca Carlone, and Nicholas Roy. Task
and motion planning in hierarchical 3d scene graphs, 2024.
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