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ABSTRACT
Social robots have demonstrated their potential to undertake as-
pects of a therapist’s role, while showing a positive effect on user
engagement. To deliver impact in the real world, these robots must
have the capability to effect long-term decision making through
continued personalization to 1) the patient’s progressive exercise
performance ability, and 2) their social behavior preferences. We
undertook a series of collaborative workshops with domain experts
to inform a rich knowledge representation for long-term upper
limb recovery. We introduce a planned Hierarchical Reinforcement
Learning (HRL) approach to exploit the natural hierarchical struc-
ture found in our problem, and promote more sample efficient
learning, a common challenge in current RL-based HRI personaliza-
tion. Our end goal is to deploy this system in-situ, over long-term
engagement with recovering patients.

CCS CONCEPTS
• Computing methodologies → Machine learning approaches; •
Computer systems organization→ Robotic autonomy.

KEYWORDS
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1 INTRODUCTION
A well-structured progressive exercise program plays a central role
in the recovery of patients after critical injury. Equally essential
is the maintenance of high engagement levels, as it significantly
influences overall program adherence [20]. However, achieving
these objectives is often challenging due to resource shortages in
struggling healthcare systems and low patient motivation. Recently,
Social Robots (SRs) have emerged as a promising area of impact
to guide aspects of physical exercise in homes, hospitals, and com-
munity centers [15]. Coupled with intelligent learning techniques,
their embodiment gives rise to new capabilities that allow them
to assume richer societal roles with the ability to personalize to
aspects of the user, revealing an increased effect on engagement
over the likes of virtual agents [7, 26]. Furthermore, robotic reha-
bilitation technology is generally used as a means to enhance the
repetitive practice aspect of exercise routines, with higher-level
decisions regarding the structure and direction of the program fully
driven by the human therapist [14]. Although some level of hu-
man intervention is beneficial and, in certain instances necessary,
greater autonomous decision-making could improve the efficiency
of personalized rehabilitation program delivery.

Existing work has provided a glimpse into the potential impact
of personalized SRs in the rehabilitation space, yet largely focuses
on short-term interactions with limited decision-making capabili-
ties with regard to program structure and direction. However, the
relationship between a human patient and a therapist is often long-
lasting and involves rich social exchange and learning over time
that builds trust from an understanding of the patient’s therapeutic
needs and social preferences [7]. For robots to adopt such roles
effectively, the ability to sustain long-term interaction is essential,
and evaluation of these systems in-situ is imperative to advancing
the field [2].

We introduce our design of a social robot that aims to personalize
aspects of long-term upper limb rehabilitation after critical injury.
Specifically, we look to enable the instruction of exercises based
on the patient’s exercise performance ability and the actioning of
preferred social behaviors learned from periodic user feedback. To
inform our design, we conducted several workshops with domain
experts centered on the structure of the long-term program and
the interactive components during a single session. We present the
translation of the findings from this design exploration phase to a
knowledge representation that can enable long-term decision mak-
ing for our SR, driven by a Hierarchical Reinforcement Learning
(HRL) mechanism. We then outline future steps, including feasi-
bility testing through an initial pilot phase followed by simulation
to evaluate the HRL approach. Our final goal is to evaluate our
system over a long-term period of engagement with patients at a
community rehabilitation center.

2 RELATEDWORK
There has been considerable focus on the recent utilization of SRs
within the area of physical rehabilitation. Popular applications
involve the use of SRs as exercise companions during recovery
sessions, providing motivational utterances during upper limb ex-
ercise [7, 8, 10, 23].

Beyond short-term interactions, SRs have also been evaluated
over multiple sessions and more longitudinal timeframes. Irfan et
al. present a robot for use during cardiac rehabilitation program
with 26 participants over 2.5 years [11]. Aspects of personalization
included progress tracking between sessions, attendance track-
ing, and automatic recognition of patients. The personalizable SR
showed improved cardiovascular function over the long term and
robot conditions revealed improved patient adherence. Pulido et al.
describe a long-term study over 4 months with 8 pediatric patients,
15 sessions each, using a SAR for upper limb rehabilitation [18].
The system used expert-described poses sent to engineers using
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Figure 1: An overview of upper limb exercise progression, as
informed through our workshop activities.

Planning Domain Definition Language (PDDL) for automated plan-
ning. While reporting increased subjective engagement and a slight
rise in Range of Motion (ROM), the need for continuous human
monitoring and potential challenges in adapting to unpredictable
user behavior pose as potential limitations to achieving full auton-
omy. Winkle et al. undertook a 27-session study on the application
of an Interactive Machine Learning (IML) approach to enhance au-
tonomous SAR behavior during a couch-to-5k exercise session [27].
Challenges were noted in the timing of action selection, likely at-
tributed to the choice of the learning algorithm—a basic adaptation
of K-nearest neighbors.

These studies demonstrate the promising potential of SR person-
alization over long-term/multiple session rehabilitation, however,
primarily concentrate on the adaption of lower-level social compo-
nents rather than directing high-level program structure over the
long-term. In wider HRI research, the area of long-term or ’lifelong’
learning is an open challenge, yet machine learning techniques
such as Reinforcement Learning (RL) can help achieve behavior
personalization in complex HRI tasks [1]. For instance, Tapus et al.
aims to utilize RL to match robot behavior such as proxemics, speed,
and vocal content to user personality types during multiple evalua-
tion studies involving post-stroke rehabilitation [24]. They revealed
the RL approach was effective in almost all cases, although limited
interaction experience likely hindered convergence to optimal ro-
bot behavior. RL, by nature, can prove challenging when training
experience relies on real-world data [28]. In some instances, where
human behavior can be simulated prior to real-world deployment,
starting policies can be learned to boost learning convergence. Tsi-
akas et al. demonstrate this concept when attempting to adapt task
difficulty during a cognitive therapy task based on performance and
user engagement [25], where they generate simulated user behavior
to evaluate an RL approach for robot personalization, based on an
existing dataset.

3 DESIGN INSIGHTS FROM DOMAIN EXPERTS
To initiate the design phase, we first conducted an investigation
of human-human physiotherapy practices to inform a rich knowl-
edge representation for our system. To do this, we held a series
of design workshops with expert physiotherapists from academia,
the health technology industry, and the Scottish National Health

Service (NHS). Workshops were divided into two key areas of explo-
ration, long-term program structure and single session interaction. To
ensure robust insight, we specified that all participants: 1) be a fully
qualified physiotherapist; 2) have a minimum of 2 years of experi-
ence; 3) currently work with upper limb rehabilitation patients or
have done so within the past 3 years. The workshops received full
ethical approval from the University and all participants gave their
consent to participate and be subjected to video recording (only
relevant to Section 3.1). We used the Constant Comparative Method
(CCM) of thematic analysis [9] to reach our findings discussed in
the subsequent sections, allowing us to draw out emergent themes
from the data.

3.1 Long-Term Program Structure
We conducted four separate workshops with six physiotherapists (1
practicing NHS physiotherapist/academic, 1 practicing NHS phys-
iotherapist, 3 practicing NHS physiotherapists, and 1 fully trained
physiotherapist working in rehabilitative robotics, respectively).
Participants had an average of 5.3 years’ experience in patient prac-
tice. Our objective was to fully understand the progressive stages
involved in an upper-limb rehabilitation program, and to struc-
ture this information such that it could translate effectively to our
system design for long-term interaction.

3.1.1 Procedure. We first held semi-structured interviews with
participants. To help stimulate discussions, we prompted partici-
pants with three patient personas, each recovering from shoulder
fractures at weeks 1-3, 3-6, and 6+ respectively, as aligned with
existing NHS materials for self-managed recovery [16]. The talking
points for each persona were 1) types of exercise at this stage, 2)
details of exercise such as the number of repetitions, 3) measure-
ments used to assess patient progress or ability, and 4) any other
information relevant to the particular stage. We then used a Vicon
motion capture system to record the participants performing three
repetitions of each discussed exercise correctly. This allowed us
to formulate a dataset of exercise recordings for use later during
development to the robot’s perception component (future work).

3.1.2 Findings. The early weeks of recovery (typically weeks 0-3)
were deemed unlikely to be suitable for such a robotic intervention
as the patients are performing gentle mobilization exercises to
relieve stiffness. At weeks 3-5, patients begin to engage in repetitive
range of motion (ROM) exercises such as flexion, abduction, internal
and external rotations. Active assistive (the patient’s affected limb
is assisted) movement is started and gradually phased into active
(no assistance) movements. Beyond week 6, ROM exercises are
continued with the introduction of low-resistance strengthening
exercises, gradually increasing to weight-bearing movement. We
used this information to build a knowledge representation of the
long-term recovery scenario for our system as shown in Figure 1.
Participants stressed that the recovery timeline is highly flexible
from patient-to-patient, but the general progression remains the
same. Pain management is also of importance, using assessments
such as the Visual Analogue Scale [21], and frequent assessment of
ROM and strength to understand progress. Generalization of our
system to other causes of upper limb injury were also of interest,
such to maximize potential impact. Participants communicated that
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the proposed robot system will likely be able to use this program
structure in other variations of shoulder fracture, stroke, frozen
shoulder, and postoperative recovery.

3.2 Single Session Interaction
A workshop was carried out involving a group of seven physiother-
apists whowork in the NHS. Among them, twowere also academics.
The average experience of the participants was 14 years. Six par-
ticipants took part in the long-term program structure workshop
(Section 3.1). The aim of this session was to understand physiother-
apist behaviors inside a single rehabilitation session, with a focus
on any social actions or short-term considerations and how these
may manifest during a one-to-one session.

3.2.1 Procedure. Ross et al. previously conducted systematic ob-
servations of upper limb exercise sessions and generated a dataset
of physiotherapist behavior models, representing various styles of
delivery [19]. The behavior actions of these models (i.e. instruc-
tion, hustle, praise, console, etc.) were influenced by the Arizona
State University Observation Instrument [13], a popular tool to
systematically record expert actions during sports coaching ses-
sions. We utilized a subset of these models as design probes during
our workshop, asking participants to provide granular feedback
on the therapist behaviors as annotations on the models. Prior to
this annotation session, we provided a short demonstration of the
ARI humanoid robot by PAL robotics [6], the proposed social robot
embodiment for this project. An example of an annotated behavior
model can be seen in Figure 2. We additionally recorded any verbal
discussions that arose during the workshop for later analysis.

3.2.2 Findings. Participants discussed the importance of balanc-
ing certain social actions such as praise, console, and hustle to the
correct personality type, "Approach can differ per person. Some
need more support or encouragement than others. It is very specific
to the patient". Avoiding the repetition of phrases was also a con-
cern for participants when considering the proposed robot system,
"Being repetitive is fine for exercises, but not for communication".
Close monitoring of patient emotional and physical state is also of
high importance for both the effective direction of rehabilitation
and patient safety, with specific focus on pain, fatigue, engagement,
and frustration, "pain monitoring is important, [therapists] use a
visual scale". Participants additionally stressed the importance of
progress feedback to long-term engagement, "remind them of long-
term improvements", "remind them that [they have] managed 100
reps. If you think about a week ago, [they] probably wouldn’t have
been able to do 10". With regard to the occurrences and flow of such
social actions during the sessions, our model annotations helped
clarify when and how frequently these should be applied. The key
findings were the assessment of the physical and emotional state
at the beginning of a session and the heavy use of verbal support
during and between exercise repetitions to maintain participation
and gather feedback on the patient’s feelings during the session.

4 LONG-TERM PERSONALIZATION
APPROACH

We introduce a Reinforcement Learning (RL) approach to address
our goal of personalization. RL describes a problem where an agent

Figure 2: An example of an annotated behavior model from
our single session interaction design workshop

interacting with an environment seeks to learn a policy of state-to-
action mappings in an effort to maximize a cumulative reward over
time [22]. This learning process manifests as interaction experience
between the agent and the environment, progressively improving
its behavior policy. Such an approach fits well to our use case, were
we wish for our robot to learn the most optimal actions to take over
time to maximize patient engagement and therapeutic outcome.

Figure 3: Our hierarchical learning structure. ROM Drill has
been expanded to show an example of task decomposition.
(1) and (2) show levels where learning will take place.
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4.1 A Hierarchical RL Framework
Hierarchical Reinforcement Learning (HRL) has demonstrated po-
tential within HRI personalization [3–5], being particularly well
suited for tasks characterized by a natural hierarchy, wherein com-
plex objectives can be systematically decomposed into smaller, more
manageable subtasks [17]. We explore the potential of utilizing HRL
as the structure of a recovery session, shown in Figure 3, naturally
breaks down into sub-tasks which can be independently solved
and, importantly, can be reused at different stages of the session.
Furthermore, in Section 4.2 we discuss how HRL provides various
advantages of traditional RL approaches that will help combat some
of the common issues which arrise in RL-based HRI personalization.

During interaction, a perception component will deliver input
to the learning agent concerning real-time exercise performance
levels and periodic user feedback. There are a wide array of po-
tential techniques towards acquiring motion-tracking data such as
computer vision or wearable sensor technologies. User feedback
can be gathered between rests in exercise sets and could act as
a strong indicator towards user perception of the current session.
One of our next steps in this overarching work, discussed in Section
5, is to design and evaluate these perception technologies.

4.1.1 High-level controller. HRL allows for various behavior poli-
cies to be learned at each level of the task hierarchy, such that
tasks will control the selection and execution of the sub-tasks be-
low. In our framework, learning will take place at levels 1 and
2 as depicted in Figure 3. Furthermore, profile states that persist
over multiple interaction episodes are necessary to enable ongoing
learning, specifically, current exercise ability and the patient’s social
preference. As users naturally progress through varying physical
abilities, they will enter new profile states, thus allowing our system
to provide ongoing personalization.

The set of states pertaining to the high-level control tasks are as
follows. ROM Drill, Strengthening Drill:
s{current exercise, exercise ability, previous completion rate}. Exercise
ability is used to restrict lower abilities from accessing exercises
which are out of scope and previous completion rate provides infor-
mation on how well the patient performed previously inside each
phase of the session, thus helping the policy to select exercises for
the current session. The reward function at this level will be based
on relative completion rate compared to the patient’s previous
session.

4.1.2 Low-level controller. The low-level controller will decide
upon more fine-grained instructions such as the number of sets and
repetitions (represented as pair {set, repetition}), as well as social
actions. The set of states pertaining to the low-level control tasks
is as follows. s{previous performace, social preference}. Previous per-
formance will allow for a more fine-grained understanding of the
patients performance in individual exercises, while social preference
will guide the agent’s social behaviors closer to that style of inter-
action. The reward function at this level will be based on relative
performance compared to the patient’s previous session, and high
engagement sensed through periodic patient feedback.

4.2 Challenges
Attempting to optimize robot behavior from human interactions
within real-world constraints introduces a variety of practical and
theoretical challenges.

4.2.1 Sample efficiency. Learning optimal policies in such complex
scenarios traditionally requires large amounts of training data. In
the case of real-world HRI, data from human interaction experience
is difficult to obtain [28]. There are various techniques that can be
employed to mitigate the need for extensive learning: abstraction
through simplified state space design and task decomposition en-
abled through the HRL framework; transfer learning were parts of
the HRL allow for policies to be reused across various sub-tasks;
learning through simulated users can generate starting policies to
boost learning at the beginning of deployment.

4.2.2 User safety. Controlling autonomous decision-making in
high-risk scenarios such as rehabilitation is paramount. Our robot
should not be permitted access to actions that pose potential harm
to users, for instance, the instruction of strengthening exercises
for patients in the early stages of recovery. Several safeguarding
measures will be taken to mitigate risk, specifically: frequent assess-
ment of physical ability and user profiling; rule-based constraints
to block certain profiles from entering high ability phases of the
session; expert oversight to supervise system actions.

4.2.3 Moving goals. Since patients’ physical abilities and therapeu-
tic goals evolve over time, we would expect that the underlying
relationship between actions and resulting rewards of our system
would be non-stationary, thus threatening efficient learning. To mit-
igate this, our system will focus on relative progress from session
to session, with a reward function which incentivizes performance
and engagement progress.

5 FUTUREWORK AND CONCLUSION
Future steps include the development of an initial prototype of the
system in which a second round of domain expert collaboration
will be conducted to gather feedback on the interaction design,
and validate the technical feasibility of a perception component for
real-time data gathering on exercise performance quality and user
feedback. Previous work in HRI has demonstrated how domain
experts roleplaying as end users can create useful datasets for early
feasibility testing [12]. We aim to exploit this technique to develop
a set of simulated users at various stages of recovery, enabling the
safe evaluation of our HRL framework in a simulated environment
prior to real-world deployment. Our final goal is to evaluate our
system over long-term engagement in a community rehabilitation
setting.

In this work, we describe our learnings from workshop activi-
ties with domain experts in the upper limb rehabilitation domain.
From this, we show how aspects of session interaction and, more
interestingly, long-term program progression have translated into
a comprehensive knowledge representation for the basis of a long-
term robot personalization framework that will form the basis of
our planned hierarchical reinforcement learning approach. We aim
to optimize our system to user profiles based on ongoing assess-
ments of physical performance ability during exercise, as well as
personal behavior preference.



Designing Long-Term Interaction for Robot-Assisted Recovery after Critical Injury LEAP-HRI, HRI ’24, March 11–14, 2024, Boulder, CO, USA

REFERENCES
[1] Neziha Akalin and Amy Loutfi. 2021. Reinforcement learning approaches in

social robotics. Sensors 21, 4 (2021), 1292.
[2] Antonio Andriella, Carme Torras, and Guillem Alenya. 2020. Short-term human–

robot interaction adaptability in real-world environments. International Journal
of Social Robotics 12 (2020), 639–657.

[3] Jeanie Chan and Goldie Nejat. 2011. A learning-based control architecture for
an assistive robot providing social engagement during cognitively stimulating
activities. In 2011 IEEE International Conference on Robotics and Automation. IEEE,
3928–3933.

[4] Jeanie Chan and Goldie Nejat. 2011. Minimizing task-induced stress in cognitively
stimulating activities using an intelligent socially assistive robot. In 2011 RO-MAN.
IEEE, 296–301.

[5] Jeanie Chan and Goldie Nejat. 2012. Social intelligence for a robot engaging
people in cognitive training activities. International Journal of Advanced Robotic
Systems 9, 4 (2012), 113.

[6] Sara Cooper, Alessandro Di Fava, Carlos Vivas, Luca Marchionni, and Francesco
Ferro. 2020. ARI: The social assistive robot and companion. In 2020 29th IEEE
International Conference on Robot and Human Interactive Communication (RO-
MAN). IEEE, 745–751.

[7] Juan Fasola and Maja J Matarić. 2013. A socially assistive robot exercise coach
for the elderly. Journal of Human-Robot Interaction 2, 2 (2013), 3–32.

[8] Ronit Feingold-Polak, Oren Barzel, and Shelly Levy-Tzedek. 2021. A robot goes to
rehab: a novel gamified system for long-term stroke rehabilitation using a socially
assistive robot—methodology and usability testing. Journal of neuroengineering
and rehabilitation 18, 1 (2021), 1–18.

[9] Barney G Glaser, Anselm L Strauss, and Elizabeth Strutzel. 1968. The discovery
of grounded theory; strategies for qualitative research. Nursing research 17, 4
(1968), 364.

[10] Min Hun Lee, Daniel P Siewiorek, Asim Smailagic, Alexandre Bernardino, and
Sergi Bermudez i Badia. 2023. Design, development, and evaluation of an inter-
active personalized social robot to monitor and coach post-stroke rehabilitation
exercises. User Modeling and User-Adapted Interaction 33, 2 (2023), 545–569.

[11] Bahar Irfan, Nathalia Céspedes, Jonathan Casas, Emmanuel Senft, Luisa F Gutiér-
rez, Mónica Rincon-Roncancio, Carlos A Cifuentes, Tony Belpaeme, and Marcela
Múnera. 2023. Personalised socially assistive robot for cardiac rehabilitation:
Critical reflections on long-term interactions in the real world. User Modeling
and User-Adapted Interaction 33, 2 (2023), 497–544.

[12] Joe Jeffcock, Mark Hansen, and Virginia Ruiz Garate. 2023. Transformers
and human-robot interaction for delirium detection. In Proceedings of the 2023
ACM/IEEE International Conference on Human-Robot Interaction. 466–474.

[13] Alan C Lacy and Paul W Darst. 1984. Evolution of a systematic observation
system: The ASU coaching observation instrument. Journal of teaching in physical
education 3, 3 (1984), 59–66.

[14] Rui CV Loureiro, William S Harwin, Kiyoshi Nagai, and Michelle Johnson. 2011.
Advances in upper limb stroke rehabilitation: a technology push. Medical &
biological engineering & computing 49 (2011), 1103–1118.

[15] Abolfazl Mohebbi. 2020. Human-robot interaction in rehabilitation and assistance:
a review. Current Robotics Reports 1 (2020), 131–144.

[16] NHS-Inform. 2021. Exercises for shoulder muscle and joint prob-
lems. https://www.nhsinform.scot/illnesses-and-conditions/muscle-bone-and-
joints/exercises/exercises-for-shoulder-problems#seated-forearm-turn. Ac-
cessed: 2021-12-12.

[17] Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai Quek. 2021.
Hierarchical reinforcement learning: A comprehensive survey. ACM Computing
Surveys (CSUR) 54, 5 (2021), 1–35.

[18] Jose Carlos Pulido, Cristina Suarez-Mejias, Jose Carlos Gonzalez, Alvaro Duenas
Ruiz, Patricia Ferrand Ferri, Maria Encarnacion Martinez Sahuquillo, Carmen
Echevarria Ruiz De Vargas, Pedro Infante-Cossio, Carlos Luis Parra Calderon,
and Fernando Fernandez. 2019. A socially assistive robotic platform for upper-
limb rehabilitation: a longitudinal study with pediatric patients. IEEE Robotics &
Automation Magazine 26, 2 (2019), 24–39.

[19] Martin Ross, Frank Broz, and Lynne Baillie. 2021. Observing and clustering
coaching behaviours to inform the design of a personalised robotic coach. In Pro-
ceedings of the 23rd international conference on mobile human-computer interaction.
1–17.

[20] Martin Saebu, Marit Sørensen, and Hallgeir Halvari. 2013. Motivation for physical
activity in young adults with physical disabilities during a rehabilitation stay: a
longitudinal test of self-determination theory. Journal of Applied Social Psychology
43, 3 (2013), 612–625.

[21] Jane Scott and EC Huskisson. 1976. Graphic representation of pain. pain 2, 2
(1976), 175–184.

[22] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[23] Katelyn Swift-Spong, Elaine Short, Eric Wade, and Maja J Matarić. 2015. Effects
of comparative feedback from a socially assistive robot on self-efficacy in post-
stroke rehabilitation. In 2015 IEEE International Conference on Rehabilitation
Robotics (ICORR). IEEE, 764–769.

[24] Adriana Tapus, Cristian Ţăpuş, and Maja J Matarić. 2008. User—robot personality
matching and assistive robot behavior adaptation for post-stroke rehabilitation
therapy. Intelligent Service Robotics 1 (2008), 169–183.

[25] Konstantinos Tsiakas, Maher Abujelala, and Fillia Makedon. 2018. Task en-
gagement as personalization feedback for socially-assistive robots and cognitive
training. Technologies 6, 2 (2018), 49.

[26] Valentina Vasco, CescoWillemse, Pauline Chevalier, Davide De Tommaso, Valerio
Gower, Furio Gramatica, Vadim Tikhanoff, Ugo Pattacini, Giorgio Metta, and
AgnieszkaWykowska. 2019. Train with me: a study comparing a socially assistive
robot and a virtual agent for a rehabilitation task. In International Conference on
Social Robotics. Springer, 453–463.

[27] Katie Winkle, Séverin Lemaignan, Praminda Caleb-Solly, Paul Bremner, Ailie J
Turton, and Ute Leonards. 2020. In-Situ Learning from a Domain Expert for Real
World Socially Assistive Robot Deployment.. In Robotics: Science and Systems.

[28] Yang Yu. 2018. Towards Sample Efficient Reinforcement Learning.. In IJCAI.
5739–5743.

https://www.nhsinform.scot/illnesses-and-conditions/muscle-bone-and-joints/exercises/exercises-for-shoulder-problems#seated-forearm-turn
https://www.nhsinform.scot/illnesses-and-conditions/muscle-bone-and-joints/exercises/exercises-for-shoulder-problems#seated-forearm-turn

	Abstract
	1 Introduction
	2 Related Work
	3 Design Insights from Domain Experts
	3.1 Long-Term Program Structure
	3.2 Single Session Interaction

	4 Long-Term Personalization Approach
	4.1 A Hierarchical RL Framework
	4.2 Challenges

	5 Future Work and Conclusion
	References

