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ABSTRACT
As social robots become increasingly integrated into daily life, en-
suring their behaviours align with social norms is crucial. For their
widespread open-world application, it is important to explore Feder-
ated Learning (FL) settings where individual robots can learn about
their unique environments while also learning from each others’ ex-
periences. In this paper, we present a novel FL benchmark that eval-
uates different strategies, using multi-label regression objectives,
where each client individually learns to predict the social appropri-
ateness of different robot actions while also sharing their learning
with others. Furthermore, splitting the training data by different
contexts such that each client incrementally learns across contexts,
we present a novel Federated Continual Learning (FCL) benchmark
that adapts FL-based methods to use state-of-the-art Continual
Learning (CL) methods to continually learn socially appropriate
agent behaviours under different contextual settings. Federated
Averaging (FedAvg) of weights emerges as a robust FL strategy
while rehearsal-based FCL enables incrementally learning the social
appropriateness of robot actions, across contextual splits.
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1 INTRODUCTION
Social robots deployed in open-world human-centred environments
are required to dynamically expand their knowledge by learning
new tasks while preserving past knowledge [4, 5]. Such adaptation
can enable them to support their users in day-to-day tasks by em-
bedding themselves seamlessly within the social settings of their
environments. Most robotic solutions for current day applications
are designed as stand-alone implementations, tailored to specific
tasks and/or environments [5]. As advances in Artificial Intelli-
gence (AI) and Machine Learning (ML) gear robots towards a more
ubiquitous presence, there is a need to explore adaptive learning
paradigms that to not only facilitate a widespread and generalised
application but also allow individual robots to personalise towards
end-user requirements and preferences. This can be in the form
of several robots deployed, in a distributed manner, across differ-
ent contextual settings, interacting with multiple users at a time
and learning different tasks [9]. Under such complex and diverse
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application settings, there is a need to move beyond centralised
platforms towards more distributed learning paradigms, enabling
robots to learn continually while sharing their learning with others.

Traditional ML-based robotic applications, especially where mul-
tiple robots are deployed in parallel, usually follow a centralised
learning (see Figure 1; left) approach where each robot collects
data from its individual environment and communicates it to a
central server. The data from each robot is then aggregated and a
unified global model is trained to be used by each individual robot.
Despite enabling robots to share experiences amongst each other,
centralised learning approaches focus on developing a one-size-fits-
all solution by training a unified model that can generalise across
applications. Data privacy becomes a major concern as each robot
shares the data collected by them with the central server which
may not be acceptable in certain situations.

Federated Learning (FL) [22] (see Figure 1; middle), on the other
hand, allows robots to learn independently from their own unique
experiences, updating their learning models using only the data col-
lected by them locally. Over time, these local updates for each agent
can be aggregated across the centralised server, in the form of model
updates that can inform training the unified centralised model. FL
allows for a more privacy-preserving learning paradigm where
local data is never shared with a centralised server. FL solutions
have been used popularly in embedded or EdgeAI devices [13] that
benefit from distributed learning settings [32] gathering and pro-
cessing their own data in their unique application settings but also
sharing their learning towards training a global aggregated model
that allows devices to share knowledge between each other [18].

As social robots interact with their environments gathering data,
they need to efficiently discern novel knowledge from past ex-
periences and adapt their learning models to accommodate new
knowledge [25]. Under FL settings, this means that the data col-
lected by each robot individually need not be independent and
identically distributed (i.i.d), requiring the robot to learn with se-
quential streams of data in an incremental manner, personalising
individual robots towards their environment and users. Continual
Learning (CL) [10, 24] can help address this problem further by en-
abling robots to adapt their learning with continuous and sequential
streams of data acquired from non-stationary or changing environ-
ments [5, 16]. This may be achieved by regularising model updates,
replaying already seen information or dynamically expanding mod-
els to accommodate new information [5]. Combining FL and CL,
Federated Continual Learning (FCL) [9, 30] (see Figure 1; right)
allows for individual robots, learning with sequential streams of
unique local data, to also benefit from other robots’ learning. Each
agent periodically sends their model parameters to the centralised
server where the knowledge from all agents is aggregated into a
unified model which is sent back.
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Figure 1: Centralised Learning (left) requires robots to share data with the server to train a sharedmodel. Federated Learning (FL)
(middle) allows local model weights or gradients to be aggregated on the server without sharing data. Federated Continual
Learning (FCL) (right) further allows individual robots to incrementally learn tasks, sharing model updates with each other.

Figure 2: MANNERS-DB: A living room scenario with the
Pepper robot. Adapted from [29].

Such distributed learning settings are particularly desirable for
social robots operating in human-centred environments, to under-
stand and learn socially appropriate behaviours, depending upon
the context of the interaction, environmental factors as well as indi-
vidual user preferences [5, 9]. Whether it is effectively navigating
complex social environments [7, 21], learning approach and posi-
tioning behaviours [8, 23] or learning task-specific behaviours [29],
it is essential for robots to consider the social-appropriateness of
their behaviours in order to comply with social norms [2, 6].

In this paper, we explore simulated environments with humans
and robotic agents to learn the social appropriateness of different
high-level tasks as a use case for FL and FCL-based application of
open-world learning. Depending upon the user, context or social
norms [2], the agents need to learn what actions may be appro-
priate for them to perform and how they will be viewed by their
users [23, 29]. Here, we explore the MANNERS-DB dataset [29] that
provides social-appropriateness ratings for different agent actions
in simulated home settings. We benchmark different FL and FCL
methods to understand how such a learning of socially-appropriate
agent behaviours can be realised in a distributed manner (FL) learn-
ing incrementally and sequentially (FCL), where individual agents
effectively share their learning with each other.

2 METHODOLOGY
2.1 Learning Scenario: MANNERS-DB Dataset
Learning socially appropriate behaviours in complex home settings
requires robots to be sensitive to its positioning with respect to
other objects and users as well as individual user preferences. In
this work, we explore a simulated living room scenario consisting of
different actors where the agent is tasked upon learning the social
appropriateness of different actions. For this, the MANNERS-DB

dataset [29] is used that consists of 3D scenes, created with Unity,
of the Pepper robot co-inhabiting a living room space with other
humans (adults and children) and animals under different social
settings (see Figure 2). For each scene, the robot can perform 8
different tasks, that is, vacuuming, mopping, carrying warm/cold
food, carrying big/small objects, carrying drinks or cleaning/starting
conversations. These tasks can be performed by the robot either
within a circle of influence or in the direction of operation with the
only difference being cleaning within a circle and starting a conver-
sation in the direction of the arrow. Crowd-sourced annotations are
provided for the social appropriateness of each of these actions for
every scene (out of a total of ≈ 1000 scenes), labelled on a 5-point
Likert scale, ranging from very inappropriate to very appropriate.

2.2 Experimentation Settings
2.2.1 Input Features and Data Augmentation: For each scene, a
29−dimensional descriptor is provided consisting of features such
as a flags for circle of influence or direction of operation, number
of humans, children and animals, distance between the robot and
the 3 closest humans, amongst others (see [29] for the complete
list). We use the 29−d scene descriptors as the input to the model to
predict the social-appropriateness of each of the 8 actions (within
the circle or in the direction of the arrow). For both FL and FCL
evaluations, the data is split into training and test splits in the ratio
of 75% : 25%. The training data is further split amongst the different
clients (2 or 10) with the shared test-set used for evaluation. For
FCL evaluations, the training set of individual clients (or simulation
nodes) is further split into two tasks, that is, samples depicting the
robot operating with an circle (Task 1) and in the direction of the
arrow (Task 2). Since the MANNERS-DB dataset is a relatively small
dataset with approx. 1000 samples, we also benchmark the different
FL and FCL methods using data augmentation as well. For this, a
Gaussian noise (𝜇 = 0, 𝜎 = 0.01) is added to each feature.

2.2.2 Implementation Details: For each FL and FCL approach, a
Multilayer Perceptron (MLP)-based model is implemented consist-
ing of two Fully Connected (FC) layers of 16 units each with a linear
activation. Each FC layer is followed by a BatchNormalisation
layer. The output of the last FC layer is passed to the 8−unit output
layer, predicting the social appropriateness for each of the 8 robot
actions. The experiments are run for 2 − 10 clients. This relatively
low number of clients is to compare these methods for a potential
real-world evaluation to be conducted using physical robots. For
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Table 1: Federated Learning results for the MANNERS-DB
dataset for two (left) and ten (right) clients. Bold values de-
note best while [bracketed] denote second-best values.

Two Clients Ten Clients
Method Loss RMSE PCC Loss RMSE PCC

W/O Augmentation
FedAvg 0.219 0.468 0.445 [0.225] 0.475 0.453
FedBN 0.222 0.471 [0.456] 0.226 0.475 [0.454]
FedProx [0.220] [0.469] 0.458 [0.225] [0.474] 0.465
FedOpt 0.223 0.472 0.448 0.224 0.473 0.452
FedDistill 0.250 0.500 0.425 0.670 0.818 0.419

W/ Augmentation
FedAvg𝐴𝑢𝑔 0.212 0.460 0.421 0.213 0.462 0.419
FedBN𝐴𝑢𝑔 0.231 0.480 [0.402] [0.224] [0.473] 0.402
FedProx𝐴𝑢𝑔 [0.222] [0.471] 0.401 0.227 0.476 [0.404]
FedOpt𝐴𝑢𝑔 0.231 0.481 0.397 0.227 0.477 0.401
FedDistill𝐴𝑢𝑔 0.251 0.501 0.383 0.231 0.481 0.399

brevity, results for only 2 and 10 clients are presented. All models
are implemented using the PyTorch 1 and Flower2 Python Libraries.
2.2.3 Evaluation Metrics: Since each client is learning the social-
appropriateness of each of the 8 possible actions, we use regression-
based loss and evaluation metrics. The models are trained using the
Mean Squared Error (MSE), computed as an average across the 8
actions. Furthermore, the average Root Mean Squared Error (RMSE)
and Pearson’s Correlation Coefficient (PCC) [3] scores are also
reported, computed as an average across the 8 actions.

3 THE FL BENCHMARK
We compare different state-of-the-art FL methods, both without and
with data augmentation, presenting a novel benchmark for learning
social appropriateness for different robot actions simultaneously.

3.1 Compared approaches
3.1.1 FedAvg: Federated Averaging (FedAvg) [18] is a straight-
forward approach for weight aggregation across clients in rounds
where at each round, a centralised server gathers the model weights
from𝑚 clients, aggregates them by computing the average across
these𝑚 clients to form the global model weights and then updates
the weights of each client with the global model weights.
3.1.2 FedBN: One of the main problems with FedAvg comes un-
der heterogeneous data conditions where local data is non-i.i.d.
FedBN [19] aims to address this problem by adapting FedAvg by
keeping the parameters for all the BatchNormalisation layers
‘strictly local’, that is, all other model weights are aggregated across
clients apart from the BatchNormalisation parameters.
3.1.3 FedProx: Similar to FedBN, FedProx [17] also proposes
improvements over FedAvg by allowing for only partial aggregation
of weights by adding a proximal term to FedAvg. The objective for
each client is thus modified to minimise 𝐹𝑘 (𝜔) +

𝜇
2 | |𝜔 −𝜔𝑡 | |2 where

𝐹𝑘 is the loss, 𝜔 are the local model weights to optimise and 𝜔𝑡 are
the global parameters at time-step 𝑡 . FedAvg can be considered to
be a special case of FedProx with 𝜇 = 0.
3.1.4 FedOpt: Another challenge faced by FedAvg is that of adap-
tivity. To address this, FedOpt [26] is proposed as a ‘general opti-
misation framework’ where each client uses a client optimiser to
1https://pytorch.org
2https://flower.dev

optimise on local data while the server updates apply a gradient-
based server optimiser to the aggregated model weights. We use the
Adam optimiser for both client and server optimisation. FedAvg can
be considered to be a special case of FedOpt where both client and
server optimisers use StochasticGradientDescent (SGD) with
server learning rate set to 1.
3.1.5 FedDistill: The FedDistill [14] approach also aims to im-
prove the ability of the clients to deal with heterogeneous data con-
ditions by using knowledge distillation [11]. Each client maintains
two models: (i) a local copy of the global model and (ii) a person-
alised model that acts as a teacher to the student global model. The
updated student model is then aggregated across clients.
For the above-mentioned approaches, in our experiments, each
client undergoes 10 aggregation rounds and test-metrics are com-
puted at the end of each round using the aggregated global model.

3.2 Results and Discussion
Table 1 presents the FL benchmark results. For 2 clients, the train-
set is split into two equal parts while for 10 clients, it is split into ten
equal parts. Thus, when evaluating models without augmentation,
there is relatively more data per client for two clients compared
to ten clients. We see that FedAvg performs the best under such
settings, especially as each sample enabling learning across all 8
actions, with FedProx being a close second. For 10 clients how-
ever, adaptive optimisers under FedOpt are able to work well with
low amount of per-client data with FedProx performing the second
best. Similar trends are witnessed in evaluations with augmentation
where a relatively large amount of data is available for all clients
under the 2 and 10-client splits. FedAvg performs the best here
as well while FedProx and FedBN are the next best approaches.
Our evaluations presents a multi-label regression problem which is
different from classification where FedAvg offers a relatively simple
and robust learning methodology to predict the social appropriate-
ness of agent behaviours in the MANNERS-DB dataset. Even in
situations when FedAvg is not the best performing approach the
difference in model performances is marginal.

4 THE FCL BENCHMARK
As can be seen in the FL results (see Table 1), FedAvg emerges as a
simple and robust approach in our multi-label regression set-up. For
incremental learning across tasks under non-i.i.d settings, we adapt
FedAvg for FCL using different state-of-the-art CL-based objec-
tives proposing FCL variants for FedAvg. Each client incrementally
learns the social appropriateness for different robot actions under
different learning contexts using the following CL methods, fol-
lowed by a weight aggregation round where model weights are
averaged across clients. We focus primarily on regularisation-based
CL as these methods do not require additional computational re-
sources. Naive Rehearsal (NR) [12] is included as a baseline for
rehearsal-based methods. All methods are compared, both without
and with data augmentation, presenting a novel FCL benchmark.

4.1 Compared Approaches
4.1.1 FedAvg𝐸𝑊𝐶 : The Elastic Weight Consolidation (EWC) [15]
approach introduces quadratic penalties onweight updates between
old and new tasks. For each parameter, an importance value is com-
puted using that task’s training data, approximated as a Gaussian
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Table 2: Federated Continual Learning results for the MANNERS-DB dataset for two (left) and ten (right) clients. Data is split
into two tasks: Circle (Task 1) and Arrow (Task 2). Bold values denote best while [bracketed] denote second-best values.

Two Clients Ten Clients
After Task 1 After Task 2 After Task 1 After Task 2

Method Loss RMSE PCC Loss RMSE PCC Loss RMSE PCC Loss RMSE PCC
W/O Augmentation

FedAvg𝐸𝑊𝐶 [0.248] [0.492] 0.562 0.265 0.503 0.579 0.263 0.504 0.543 0.262 0.502 0.557
FedAvg𝐸𝑊𝐶𝑂𝑛𝑙𝑖𝑛𝑒 0.242 0.488 0.621 0.261 0.501 0.581 0.249 0.491 0.582 0.268 0.507 0.550
FedAvg𝑆𝐼 0.258 0.502 [0.577] [0.240] 0.483 [0.585] 0.262 0.505 0.546 0.249 0.489 [0.574]
FedAvg𝑀𝐴𝑆 0.271 0.513 0.567 0.241 [0.481] 0.589 [0.251] [0.494] 0.573 0.261 0.502 0.556
FedAvg𝑁𝑅 0.262 0.503 0.531 0.235 0.480 0.564 0.252 [0.494] [0.577] [0.250] [0.494] 0.583

W/ Data-augmentation
FedAvg𝐸𝑊𝐶 0.197 0.439 0.631 0.240 0.482 0.528 0.179 0.419 0.620 [0.226] [0.470] [0.541]
FedAvg𝐸𝑊𝐶𝑂𝑛𝑙𝑖𝑛𝑒 0.188 0.429 0.619 0.251 0.491 0.530 [0.180] [0.420] 0.634 [0.226] [0.470] 0.542
FedAvg𝑆𝐼 0.195 0.438 [0.622] 0.236 0.481 [0.538] 0.184 0.425 [0.637] 0.240 0.481 0.529
FedAvg𝑀𝐴𝑆 [0.192] [0.434] 0.621 [0.232] [0.475] 0.534 0.184 0.424 0.640 0.232 0.474 0.534
FedAvg𝑁𝑅 0.205 0.447 0.613 0.211 0.456 0.550 0.182 0.422 0.631 0.221 0.466 0.540

Distribution with its mean as the task parameters and the impor-
tance determined by the diagonal of the Fischer Information Matrix.
4.1.2 FedAvg𝐸𝑊𝐶𝑂𝑛𝑙𝑖𝑛𝑒 : EWCOnline [27] offers an improvement
over EWCwhere, instead ofmaintaining individual quadratic penalty
terms for each of the tasks, a running sum of the Fischer Information
Matrices for the previous tasks is maintained.
4.1.3 FedAvg𝑆𝐼 : The Synaptic Intelligence (SI) [31] approach pe-
nalises changes to weight parameters or synapses such that new
tasks can be learnt without forgetting the old. To avoid forget-
ting, importance for solving a learned task is computed for each
parameter and changes in important parameters are discouraged.
4.1.4 FedAvg𝑀𝐴𝑆 : The Memory Aware Synapses (MAS) [1] ap-
proach attempts to alleviate forgetting by calculating an importance
value for each parameter by examining the sensitivity of the output
function instead of the loss function. Higher the impact of changes
to a parameter, higher is the importance assigned and higher is
the penalty imposed. Yet, different from EWC and SI, parameter
importance is calculated using only unlabelled data.
4.1.5 FedAvg𝑁𝑅 : For the Naive Rehearsal (NR) [12] approach,
each client maintains a replay buffer where a fraction of previously
seen data is stored. This old data is interleaved with the new data
to create mixed mini-batches to train the model by simulating i.i.d
data settings in an attempt to mitigate forgetting in the model.
The above-mentioned CL-based adaptations to the FedAvg ap-
proach are applied locally for each client. The importance values for
EWC, EWCOnline, SI and MAS approaches are calculated before
aggregation across clients. The computed importance values for
each of the parameters are then used to penalise changes in local
weight updates between tasks, mitigating forgetting.

4.2 Results and Discussion
Table 2 presents the FCL results. For each approach, average test-
set metrics are calculated using the aggregated global model after
all aggregation rounds are completed for each task. Task 1 results
represent test-set results only for data pertaining to the ‘circle’
split while the entire test-set is used to evaluate the models after
Task 2. Learning incrementally is seen to have a positive effect on
model performance. This is evidenced from the average PCC values
(after task 2) being better for FCL vs. FL evaluations, for both 2 and
10 clients. Without using data augmentation, rehearsal-based NR

approach performs better than regularisation-based approaches
after witnessing both tasks as it maintains a memory buffer to store
previously seen task 1 samples. With the relatively low number of
samples in the MANNERS-DB dataset, almost all the samples from
task 1 can be maintained in the memory buffer, resulting in the
better performance scores for FedAvg𝑁𝑅 . For 10 clients, SI comes
closer however NR still achieves the best PCC scores. A similar
trend is seen with data augmentation as well where NR still is able
to retain past knowledge the best. Yet, as a separate memory buffer
needs to be maintained for NR, it may not be the most resource-
efficient approach. This may become particularly challenging when
dealing with high-dimensional data such as images or videos [28].

5 CONCLUSIONS AND FUTUREWORK
This work presents a novel benchmark for learning socially ap-
propriate robot behaviours in home settings comparing different
FL and FCL approaches. For FL evaluations, FedAvg offers a rela-
tively simple and robust learning methodology matching baseline
evaluation scores from traditional ML-based methods [29]. This
motivates the use of FedAvg to be adapted for FCL evaluations
when incrementally learning different tasks. Our FCL evaluations
show that rehearsal-based NR approach is best suited for such ap-
plications albeit being memory intensive. In this work, we explore
pre-extracted 29−d scene descriptions to predict the social appro-
priateness of different robot actions. Our future work will focus on
end-to-end learning directly using scene renders while exploring
more resource-efficient generative feature replay methods [20, 28].
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