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Figure 1: The AR scenario for the robot training and interaction with the user. The scene is a common office space with a table
upon which holographic kitchen items are displayed. Virtual controls (to log out, reinitialize the scene, and initiate a teaching
episode) were displayed on the upper visual field of the person wearing AR glasses and moving rigidly with the user’s head.

ABSTRACT
Assistive robots that can be deployed in our homes will need to
be understandable, operable, and teachable by non-expert users.
This calls for an intuitive Human-Robot Interaction approach that
is also safe and sustainable in the long term. Still, few studies have
looked at repeated, unscripted interactions in a loosely supervised
setting with a robot incrementally learning from the user and con-
sequentially expanding its knowledge and abilities. In this study,
we set out to test how the user’s experience and mental model of
the robot evolve when spontaneously teaching it simple tasks in
Augmented Reality (AR). Participants could freely access the AR
glasses in a common office space and demonstrate physical skills in
a virtual kitchen scene, while the holographic robot gave feedback

LEAP-HRI, May 11th 2024, Boulder, Colorado
© 2024

about its understanding and could ask questions to generalize the
acquired task knowledge. The robot learned the semantic effects of
the demonstrated actions and upon request could reproduce those
on observed or novel objects through generalization. Preliminary
results show that users find the system engaging, understandable,
and trustworthy, but with large variance on the last two constructs.
Further analyses will assess how subjective measures can be cor-
related to user behavior, to evaluate the relation between system
understanding and teaching effectiveness.

CCS CONCEPTS
• Computer systems organization → Robotics; Real-time oper-
ating systems; • Human-centered computing→ User studies.

KEYWORDS
Long-term human-robot interaction, continual learning, learning
from demonstration, augmented reality
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1 INTRODUCTION
As robots become commonplace also outside laboratories and fac-
tories, there is an increasing need for assessing how novice users
can intuitively personalize the robot’s skills without any technical
knowledge. This means that robots supposed to support us in our
daily activities, possibly in our private spaces, need to be teachable
in an easy way while providing the user with some insight into
the robot’s perception, reasoning, and action capabilities. Our in-
ner mental model of a novel acquaintance gets refined the more
we interact with them. The same happens with complex technical
systems: even if instructing material can inform the user on how
to operate a machine and what to expect, the more the user uses
the system the more proficient they become at understanding the
way it processes information and behaves. Nevertheless, because
of common embodiment and cognitive structure, we rely on many
assumptions about what others see and understand about the world.
Yet different robots have different embodiments (sensors, actuators)
and might rely on different cognitive architectures (scene under-
standing, manipulation capabilities,...), all of which might not be
directly apparent on a first encounter [18, 19]. Typically, long-term
studies have been conducted in the field of social robotics [9], con-
sidering acceptance, adaptation, and personalization aspects [1, 4, 8].
Often non-physical tasks are considered, not involving continual
learning, or focusing on the robot social cues and appearance [11].
Here, we investigated how users would interact with a system able
to learn physical tasks from demonstration and to communicate
and show its progress, prioritizing skill learning and explainability
over social interaction. We considered that important factors for
user experience in the interaction with such a system would be how
engaging the whole teaching process is, how understandable would
be for the user the way the system processes the collected data
and learns, and how trustworthy the learning system appears to be
[2, 7]. Moreover, since both the user’s mental model of the robot
and the robot’s capabilities change across multiple interactions,
we are interested in characterizing such interdependent temporal
evolutions. Our contributions here include the presentation of the
system, the setup and procedure for the user study, along with some
preliminary results and outlook discussion.

2 SYSTEM DESIGN
We devised a system relying on the integration of multiple mod-
ules for semantic learning from demonstration, skill generalization,
symbolic planning, and action generation. These communicate via
ROS with the AR framework 1.

AR functionalities. The shared environment (Fig. 1), accessible
through AR glasses, includes a kitchen table with multiple appli-
ances and food items, while the robot is displayed on the other side
as observing the scene and the user. Object poses are continuously
tracked and sent to the back-end system, along with the user’s head
pose and their actions (picking/dropping objects, turning on/off
appliances, pouring beverages). Through gesture recognition and
grasping/manipulation logic, users interact with virtual objects
similarly as with real ones. To increase explainability and give the
1In the present study, all physical objects and the robot itself are presented as holograms
for logistic simplicity, still, they all are virtual replicas of real counterparts that can be
used as anchors for Augmented Reality visualizations.

Figure 2: Top: Design elements for online feedback to the
tutor about recognized actions and objects. Bottom: after
the demonstration, the robot asks questions to generalize
the demonstrated skill (here after seeing heating milk in the
microwave it asks the tutor "Canmicrowave be used to change
the temperature of cola from warm to hot?").

tutor online feedback about the robot’s situation understanding,
several virtual design elements [20] are displayed in AR: object and
action labels (XAI cues) are popping up whenever the teacher gazes
at some object or a manual action is recognized, while action labels
are also spoken out verbally (see Fig. 2 top, see also [3, 21, 22]).

Learning. For the robot to learn new skills, a two-stage learning
concept is used. First, the user demonstrates a skill to the robot,
which acquires it using semantic skill learning concepts. The sym-
bolic representation of the skill encodes preconditions, actions, and
effects (see [17] for more details). In this study, there are three types
of effects the robot can observe as a consequence of the user’s ac-
tions: the change of temperature (e.g., by putting some food in the
fridge or the oven), the change of crispiness (by the toaster), and
the change of aroma (by putting the mint tea bag in any liquid)2.
This is communicated back to the teacher by uttering a sentence
in the form "I’ve learned that <appliance> can change
the <attribute> of <food item> from <predicate 1> to
<predicate 2>", with𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒 ∈ {𝑜𝑣𝑒𝑛, 𝑟𝑒 𝑓 𝑟𝑖𝑔𝑒𝑟𝑎𝑡𝑜𝑟,𝑚𝑖𝑐𝑟𝑜𝑤𝑎𝑣𝑒,

𝑡𝑜𝑎𝑠𝑡𝑒𝑟, 𝑡𝑒𝑎𝑏𝑎𝑔}, while𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ∈ {𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑐𝑟𝑖𝑠𝑝𝑛𝑒𝑠𝑠, 𝑎𝑟𝑜𝑚𝑎},
and 𝑓 𝑜𝑜𝑑𝑖𝑡𝑒𝑚 ∈ {𝑏𝑟𝑒𝑎𝑑 𝑠𝑙𝑖𝑐𝑒, 𝑏𝑎𝑔𝑒𝑙, 𝑝𝑖𝑧𝑧𝑎 𝑠𝑙𝑖𝑐𝑒, 𝑎𝑝𝑝𝑙𝑒, 𝑒𝑔𝑔, 𝑠𝑝𝑎𝑔ℎ𝑒𝑡𝑡𝑖,
𝑐𝑜𝑘𝑒,𝑚𝑖𝑙𝑘,𝑤𝑎𝑡𝑒𝑟 }. As to the predicates of the attributes, temper-
ature can be one of {𝑐𝑜𝑙𝑑,𝑤𝑎𝑟𝑚,ℎ𝑜𝑡}, crispiness in {𝑠𝑜 𝑓 𝑡, 𝑐𝑟𝑖𝑠𝑝𝑦},
while aroma can vary in {𝑛𝑜 𝑎𝑟𝑜𝑚𝑎,𝑚𝑖𝑛𝑡}. In the second stage,
the robot asks the user questions about the demonstrated skill, to
generalize to similar objects. For example, after seeing a demon-
stration on how to use the microwave to heat milk, the robot can
2We assume the robot relies on hypothetical sensors to detect such changes. In practice,
such events are simulated in the virtual scene by changing related elementary attributes
of the food when turning on an appliance or if the tea bag is in a liquid, respectively.
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Figure 3: Graphical elements used to explain to the user that
the robot learned that food items in the "bread" category can
be heated up in the toaster (left). The same message is also
provided by text (right) and speech.

ask whether a similar food (see Fig. 2 bottom) can be heated in the
microwave or in some other appliance it knows has the same effect
(e.g., the oven). Across demonstrations and questions, the system
generalizes to categories higher up in the WordNet hierarchy [5]
(e.g., learning that the toaster can make "bread" hot, which is the
category encompassing white bread and bagel, see Fig. 3).

Planning. The use of elementary, domain-agnostic attributes
helps generalizing skills, allowing the robot to plan to reproduce
the observed tasks with the same or similar food items. Beside the
elementary attributes introduced above, the system makes use of
spatial attributes for 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 ∈ {𝑖𝑛𝑠𝑖𝑑𝑒, 𝑜𝑢𝑡𝑠𝑖𝑑𝑒} and 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∈
{𝑐𝑙𝑜𝑠𝑒, 𝑑𝑖𝑠𝑡𝑎𝑛𝑡}, and of device-related attributes for 𝑜𝑝𝑒𝑛𝑛𝑒𝑠𝑠 ∈
{𝑜𝑝𝑒𝑛, 𝑐𝑙𝑜𝑠𝑒} and 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ∈ {𝑜𝑛, 𝑜 𝑓 𝑓 }. In this way, the system can
represent also the effects of manipulation actions modifying spatial
and device attributes, such as put in, get out, approach with, pour,
open, close, switch on, switch off. The actions that change spatial
predicates aremostly independent of elementary predicates, and the
actions that change device-specific predicates are fully independent
of spatial and elementary ones. Such multi-level representation
relying on different attribute spaces allows a symbolic planner
to iteratively plan according to different views, each containing
ever more composite sets of attributes, first considering just which
objects are present and the predicates of the elementary attributes,
up to including spatial relations and device-related predicates.

3 STUDY DESIGN
The study was designed to be conducted semi-"in-the-wild" in an
office setting, with participants taking part spontaneously, without
experimenter supervision (if they wished so). This was meant to
allow users to interact with the system as long and as often as they
wanted, reinforcing the perception of a 24/7 functioning system.
The studywas configured as a loose repeated interaction study, with
users asked to engage in multiple teaching and planning sessions to
monitor the evolution of their behavior as the system increasingly
learns and of their subjective experience.

3.1 Procedure and methods
The study took place in a lobby connecting different office spaces
and featuring a long table upon which the virtual scene was cali-
brated. Participants were invited via mail to the study, explaining

the purpose of the study and providing a link to a video tutorial
of the experimental procedure, so that participants knew what to
expect. Participants were also reminded by a virtual board in the
AR of the basic functions of the system and that they could ask
the experimenters in a nearby room, in case they needed any as-
sistance (Fig. 1 on the right). The informed consent for the study
was provided on the table, along with a paper form asking for de-
mographic data (gender and age) and the Affinity for Technology
Interaction (ATI) scale [6]. These paper forms were inserted in
sealed paper boxes, before the very first interaction. On the table,
participants could find the HoloLens and a laptop to fill out the
scale questionnaires after each session. Their answers to the paper
and online questionnaires and their interactions with the systems
were tracked via a pseudo-ID. After logging into the HoloLens,
users were presented with the virtual scene in Fig. 1 and could play
around with objects to get acquainted with manipulating virtual
objects. The robot would ask the user to teach it something or give
it a task to execute. Each robot utterance was also displayed as a
speech bubble on top of the robot’s head until a new utterance was
spoken out, helping participants remember what the robot said
last. Participants were told that their task was to train a personal
robot, by demonstrating the use of kitchen appliances to prepare
some food, answering related questions, and, to assess the learning
progress by asking the robot to make something "hot/cold/crispy"
or to change the aroma to "mint". A teaching episode was started
by pressing the "Start learning" button in the user’s upper field of
view. Just one skill (e.g., toast bread in the toaster) or multiple skills
(e.g., heat water in the microwave and then make tea by putting
the teabag in the cup) could be demonstrated. As soon as the user
pressed the "Stop learning" button, the robot would give a summary
of the (last) learned skill (see Fig.3). Subsequently, a loop would
start with the robot asking permission to ask a question and upon
affirmative answer, asking the user a yes/no question (see Fig.2,
bottom). A planning episode could be triggered by the user looking
at food item and uttering their request. If the robot could find a plan
to achieve the desired effect, it would state "This is my plan". Then
a transparent avatar of the robot would appear on the user’s side of
the table (Fig. 4) and demonstrate the plan while announcing each
step. The plan could reflect the user’s demonstration or deviate
from it, in case the robot had generalized (e.g., it could use the
microwave instead of the toaster). If no plan was found, this was
communicated to the user. The system behavior is handled by a
state machine with three states: a default playground state to play
with the scene, renew it, or log out; a teaching state triggered by the
learning button press; a planning state, triggered by a plan request.

To nudge the user into teaching sensible skills and answering
questions diligently, we introduced a teaching score, shown as a
number and a progress bar above the robot in the playground state.
When logging in for the first time, a zero score is displayed which
is updated after each teaching episode. The score is computed as
an F2 score on a predefined ground truth, using correct general-
izations as true positives – covering the correct objects with the
generalization –, wrong generalizations as false positives – covering
incorrect objects –, and missing generalization as false negatives
– not covering objects that should be covered. This gamification
element aims also at giving participants some measure of how their
teaching expands the robot’s knowledge and enticing them to keep
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Figure 4: The robot avatar executing a requested plan.

training the system, also in competition with other users [12, 13]. It
was specified in fact that the pseudo-IDs of the best robot trainers
would be ranked and made known at the end of the study.

After logging out of the system, participantswere finally prompted
to fill out the online questionnaires on the laptop. The question-
naires are established and validated scales, aimed at assessing the
user experience through the proxy constructs of engagement, un-
derstanding, and perceived trust: the User Engagement Scale (UES,
9 items on a 5 points Likert-scale) [10], the Subjective Information
Processing Awareness Scale (SIPAS, 6 items, 6 points Likert-scale,
𝛼 = .88) [15], and the Trust Perception Scale - HRI (TP-HRI, 14
items, 0–100 % rating scale) [14]. We reasoned indeed that in the
context of long-term HRI such constructs would play a large role,
besides the actual utility and efficacy of the robot. The user study
went on for about 13 weeks (with season holiday interruption).
The whole framework was active and available during working
hours 5 days/week. In the end, the data collected amounted to the
subjective measures (the questionnaires) and behavioral data col-
lected through the system and stored in a database. These latter
comprise for each user: the trained model, the latest score achieved,
timestamped teaching episodes in terms of learned skills, questions
and answers, and timestamped planning episodes in terms of user
request and related plan or negative answer.

3.2 Participants
Participants were recruited among associates and PhD students at
our institute. In total, 37 people took part in the study, of which
3 did not fill out the demographics and ATI questionnaires and 1
never filled out the online questionnaires. Thus, we analyzed the
data from 33 participants (26 male, 7 female; age between 26 and
59, M= 36.82). The median ATI score was 4.44 (M= 4,40; SD=0.84;
𝛼 = .88). Thus, participants were non-experts as to AR or the
specific functioning of the system, but tech-savvy and often with
an engineering background.

Table 1: Descriptive statistics for three used scales (after the
first interaction). For each scale the number of Likert-scale
points or rating range is reported in parentheses.

SCALE MEDIAN MODE RANGE
UES (5 points) 3.67 3.67 1.77
SIPAS (6 points) 4.0 4.0 4.0
TP-HRI (0-1) 0.69 0.73 0.66

4 PRELIMINARY RESULTS
We are examining the collected data, but we have inspected only
questionnaire answers thus far. These revealed that 33 people in-
teracted with the system at least once, 16 interacted twice, and
only 2 people used the system in three or more sessions. When
considering only the first interaction, the descriptive statistics re-
garding the UES, SIPAS, and TP-HRI are presented in Tab. 1 as
recommended in [16]. A one-tailed one-sample t-test confirmed
that the mean value was significantly above the "neutral" point
for UES (coded as 3, 𝑡 (32) = 9.06, 𝑝 < .001) and the border be-
tween "slightly disagree" and "slightly agree" for SIPAS (coded as
3.5, 𝑡 (32) = 3.12, 𝑝 = .004). Similarly, the percent of time users
would generally trust the robot was higher than 50% for the TP-HRI
scale (𝑡 (32) = 6.72, 𝑝 < .001). No significant correlation was found
with the ATI scores (all 𝑝 > .05).

Looking at the data from users who interacted at two differ-
ent time points, differences in UES, SIPAS, and TP-HRI scores
between the first and the second interaction were all not signif-
icant (all 𝑝 > .05), but all three scores slightly declined (UES:
𝑀𝑡2−𝑡1 = −0.08, 𝑆𝐷 = 0.06; SIPAS: 𝑀𝑡2−𝑡1 = −0.34, 𝑆𝐷 = 1.30;
TP-HRI:𝑀𝑡2−𝑡1 = −0.06, 𝑆𝐷 = 0.20).

5 DISCUSSION AND OUTLOOK
In this study, we put forward a robot training system, integrating
continual learning, task planning, and explainable HRI in AR, and
investigated how such framework is perceived by novel users in-
vited to repeatedly interact.The closed-world and limited ontology
used in the scenario allowed users to teach and test the system in
short episodes. Preliminary results from scale data show that the
robot is positively perceived across dimensions concerning engage-
ment, trust, and understanding, with such perception staying stable
across first and second interaction. Such data still offer rather lim-
ited insight into the varied experiences users had with the system:
the amount of time spent in the system was not prescribed, hence
a longer first interaction might give a better idea of the system
than two short interactions. Future analyses thus are planned to
correlate subjective measures to behavioral ones (e.g., number of
demonstrated skills, answered questions, requested plans) and to
the performance of the two partners (e.g., teaching score and num-
ber of successfully generated plans) through multiple regression,
hopefully shedding light on which factors contribute to a better
perception by the user and result in more effective teaching. While
future robots will come with numerous pre-trained skills, teaching
specific tasks will help users personalize robots to comply with
their own needs and preferences, but this will need to be made
possible in an easy and intuitive way for long-term interaction.
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