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ABSTRACT
Robots face tremendous challenges when learning tasks where
labeled data is not abundantly available. In these circumstances,
human feedback can be adopted as a supervision substitute on the
robot’s performance. Existing learning approaches rely on a set
of statistical assumptions about the human feedback that robots
receive. Nominally, they assume that human feedback is Markovian,
time consistent, and retrospective, while real human feedback does
not necessarily match these assumptions. They also tend to assume
an incentive-driven model to interpret the human feedback and
their counterfactuals, enabling human action prediction and easy
machine learning (ML) optimization but failing to capture other
important intentions behind human feedback. Realistically, peo-
ple routinely and systematically alter the way that they provide
feedback based on the history of their interaction and the context
in which the feedback is provided. This adaptability is particu-
larly evident in long-term human-robot interactions where lifelong
learning and personalization occur. In this work, we describe our
preliminary work studying how a robot’s competency influences
how people correct its motion. We first survey existing work on
learning from human feedback and highlight some of the assump-
tions that they impose on the human feedback. We then present
our research question and hypotheses and, finally, describe a user
study to evaluate them.
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1 INTRODUCTION
Thanks to the advancements in sensory technology, control hard-
ware, and machine learning (ML) techniques, robots have become
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Figure 1: A human providing kinesthetic feedback to a robot
arm while it is performing pick-and-place tasks.

more and more capable in leveraging labeled data to learn tasks
that were previously deemed challenging, such as reconfigurable
manufacturing [50], general surgery [51], drone delivery [18], and
autonomous driving [40].

In scenarios where labeled data is sparse, techniques like learning
from human feedback are more widely adopted. Such techniques
are particularly favored in settings where robots need to learn and
adapt to specific users, like preference learning [56] and assistive
robotics [7]. Under this paradigm, the robot receives feedback in-
formation from the human to learn a task model.

Traditional ML algorithms rely on several assumptions of human
feedback. They assume that human feedback is Markovian, time
consistent, and retrospective. Some also assume human feedback
follows a Boltzmann distribution, i.e., that humans are exponentially
more likely to choose feedback that results in higher utility. Natural
human feedback, however, does not necessarily comply with these
assumptions, especially in long-termHRIwhere people change their
expectations of the robot over time. For instance, human feedback
assesses not only the robot’s most recent trial, but also a history of
its performance [33]. People gradually adapt their internal model
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of robot safety, so each feedback is not time consistent [14]. People
also provide feedback as guidance to future robot actions which is
not strictly retrospective [58].

One particularmodality of feedback that has gained traction in re-
cent years is corrections [21, 43, 44]. This form of feedback involves
a human intervening in a robot’s trajectory and modifying it with
kinesthetic feedback (Fig. 1). Although correction feedback lacks
a direct mapping to numerical rewards, its physical intuitiveness
requires less mental math from the feedback providers compared
to numerical evaluations, making it a good fit for studying natu-
ral human feedback. Moreover, as robotics technology advances,
correction feedback might also be a more realistic interaction type
where the human serves more as a supervisor who occasionally
intervenes, rather than as a direct teacher who evaluates every
robot trial.

In this work, we investigate how the robot’s competency (i.e., the
robot’s success rate at a task) shapes how people provide feedback
via corrections in a long-term task learning scenario. For the rest
of this paper, we will survey prior work on learning from human
feedback literature, and address some of the assumptions that they
impose on the human feedback. We then discuss other prior works
that challenge these assumptions. Finally, we propose our research
question and design an experiment to test our hypotheses.

2 RELATEDWORK
2.1 Feedback Modalities
Research in robotics has progressed thus far in learning from human
feedback, including learning from rewards [16, 34, 58], demonstra-
tions [1], corrections [9], preferences [9], implicit feedback [17],
and natural language instructions [38, 57]. Correction feedback, in
particular, involves a robot attempting to complete a task while
under supervision from a human teacher. The teacher can intervene
and modify the robot’s motion, producing a corrected trajectory
that is assumed to be more optimal with respect to the hidden
task objectives [3, 30]. While prior work has proposed methods for
learning from corrections, they do not model the teacher’s decision
to intervene in the first place.

2.2 Common Assumptions for Interpreting
Feedback

Consistently & Noisily Optimal. Prior work in human feedback
modeling typically assumes that humans provide feedback to maxi-
mize some reward. The Boltzmann rational model has been used
to represent the likelihood of a person preferring one robot action
over another based on their relative rewards. This model is then
used to construct a probabilistic interpretation of that feedback
and their counterfactuals [30, 45, 46, 62], which is widely adopted
in fields like psychology [4, 24, 25, 48], economics [12, 46, 49, 53],
and artificial intelligence [11, 23, 30, 37]. Importantly, this model
relies on a parameter representing the optimality of the human as
they provide feedback. While this parameter can be tuned for a
specific human teacher [22], it is assumed to be a static parameter.
Realistically, however, the optimality of a person’s feedback may
change over time based on their workload or the requirements of
the task.

Markovian & Time-Consistent. There are several assumptions
about the human feedback provided in reinforcement learning (RL).
First, they assume that the feedback is Markovian in that each feed-
back only evaluates the most recent robot behavior [31, 60]. Second,
they assume the feedback are time consistent: that repeating the
same behavior should result in the robot receiving the same feed-
back. As a result, the ordering of the action-feedback pairs does not
affect learning performance [59]. Finally, feedback is retrospective
in that it depends only on prior trials, not projected future perfor-
mances [6, 54]. In some cases, other constraints on feedback might
apply, such as the Bellman optimality equation [5] or the triangle
inequality [52].

2.3 Evidence Against These Assumptions
Prior works have demonstrated that people’s feedback does not
necessarily satisfy these RL-based assumptions. Experiments have
shown that people provide more positive feedback to a struggling
robot when it succeeds after a series of failures than a robot that con-
sistently performs well [33]. Studies have shown that the teacher’s
prior rewards influences the scaling of their future rewards [42, 55].
These findings all refute the Markovian assumption above.

Some works have found that human’s adaptive mental model
of the robot influences them to provide feedback that is not time
consistent. For instance, some works have shown that human’s
mental model of the robot’s capabilities can influence whether
humans provide strict or lenient evaluation [29]. Others found
that the robot’s performance can affect the human’s mental model
of both the robot and their own teaching capability [28]. Other
works have demonstrated that the predictability of robot motion
can influence the human teacher’s expectations and confidence in
the robot [19].

The retrospective assumption is also challenged since researchers
found some people use feedback as reward signals about past ac-
tions [35, 36] while others use feedback as future directed rewards
to guide subsequent actions [58].

Also, an incentive-driven definition of feedback has been chal-
lenging to generalize since prior works have shown that people
choose teaching style and use feedback very differently [15, 32, 41].
Some works showed that the human’s perceived role in robot learn-
ing is not perfectly aligned with reward maximization [41]. Some
are heavily influenced by the Pratfall Effect, providing positive feed-
back for the robot’s attractiveness when making a mistake [47].
The timing of feedback has been shown to not be a sole product of
human agency but also robot pauses that invite feedback [2].

Overall, prior work has shown that human feedback is not an
objective measure of the robot’s performance. Rather, these studies
indicate that feedback may be biased by the human’s expectation
of the robot’s performance and learning ability.

3 PROPOSED STUDY
People exhibit biases in their feedback that cannot be solely attrib-
uted to the task objectives they are trying to teach. Based on the pre-
vious section, we aim to study how a human teacher’s expectation
of the robot’s performance influences their feedback. Particularly,
we focus on bias that may be caused by the robot’s competency,
which we define as the robot’s success rate for completing a task.
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Figure 2: Experimental setup: the robot will attempt to place
blocks into the target hole, succeeding or failing based on
a pre-set competency condition. As the robot makes each
attempt, the participant may choose to intervene and correct
the robot’s motion as they deem necessary.

Competency has been shown to be the most decisive factor that
influences human trust towards the robot [26, 27].

Our overall research question is: How does the robot’s past
and current competency at the task affect when and how
people decide to intervene and correct the robot’s motion?

In this section, we propose a user study to address this question.
Using a combination of quantitative measures, qualitative measures
(e.g., usability, workload, and trust), and data analysis, we aim to
study how people in each condition provide feedback differently to
a robot arm via physical interaction.

3.1 Experimental Setup
We envision a series of pick-and-place tasks (Fig. 2) for the robot
to perform under the supervision of the human participant. The
robot’s objective is to place each block into the hole with the same
shape and color as the block. Participants will be welcomed to in-
terrupt the robot’s motion and provide a correction (i.e., kinesthetic
feedback) whenever and however they see fit to guide the robot
toward successfully completing the task (Fig. 1).

3.2 Conditions
Participants will be assigned to four robot competency conditions
(visualized in Fig. 3) representing a diverse range of agent perfor-
mance in a vanilla RL setting:

• Consistently Low: The robot exhibits consistently low com-
petency throughout all tasks. This represents an agent that
seemingly does not learn from feedback.

• Consistently High: The robot exhibits consistently high
competency throughout all tasks. This represents an agent
that requires little supervision.

• Decreasing: The robot exhibits high competency in the first
half of the tasks and low competency in the second half. This
condition resembles that of catastrophic forgetting.

• Increasing: The robot exhibits low competency in the first
half of the tasks and high competency in the second half.
This condition represents an agent that learns over time.
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Figure 3: Four Competency Conditions:Const. Low: The robot
exhibits consistently low competency throughout all tasks.
Const. High: The robot exhibits consistently high compe-
tency throughout all tasks. Decrease: The robot exhibits high
competency in the first half of the tasks and low competency
in the second half. Increase: The robot exhibits low compe-
tency in the first half of the tasks and high competency in
the second half.

3.3 Hypotheses
We intend to analyze three ways (not necessarily independent)
through which competency can influence people’s feedback. Firstly,
we will measure how the kinesthetic characteristics of each correc-
tion (i.e., torque, velocity, and displacement) are influenced by the
robot’s competency.

• RQ-1: Does the robot’s prior competency have an effect on
the effort, speed, and deviation from the nominal trajectory?
If so, how long does this effect last?

• H1: In the high-competency condition, people will provide
feedback with greater effort, velocity, and displacement from
the nominal trajectory (compared to the low-competency
condition).

Secondly, we investigate how human trust is afforded differently
to the robot with different competency. Trust is a measure of the
human teacher’s confidence in the robot [28], and it is particularly
relevant in the setting of correction feedback since humans provide
feedback before the robot finishes a task, so whether the human
chooses to intervene is an indication of the human’s prediction of
whether that robot will succeed. We believe that at what phase of
the trajectory and how often a human intervenes can be leveraged
to evaluate the human’s trust on the robot.

• RQ-2: Does the robot’s prior competency have an effect on
people’s trust of the robot?

• H2a: In the high-competency condition, people will inter-
vene less frequently (i.e., predict that robot are less likely to
fail) compared to the low-competency condition.
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• H2b: In the high-competency condition, people will report
higher measures of trust towards the robot compared to the
low-competency condition.

Thirdly, we examine how competency shapes human effort
in providing feedback. Many ML algorithms are extremely data-
hungry. For instance, in preference learning, besides the individual
demonstrations, an additional factorial-amount of pairwise com-
parison are needed, which is a significant labeling effort [13, 39].
Query-based robot learning also assumes that humans are readily
available in their bandwidth [8, 20, 61], but there are inherent cost
associated with providing feedback, whether being time, physical
effort, cognitive load, or monetary loss. Existing work assumes hu-
man effort minimization as a regularizer while optimizing a main
objective [10]. We believe the magnitude on which this regulariza-
tion is enforced (i.e., human effort) is dependent on different robot
competency. To test this theory, we define a normalized workspace
area for each human participants, and we measure human effort as
how often they step out of this workspace to provide feedback to
the robot.

• RQ-3: Does the robot’s prior competency have an effect on
people’s effort while providing feedback?

• H3: Given the same current robot competency, people will
step out of their workspace more frequently and by a larger
magnitude when the robot has previously exhibited a low
competency at the task than when the robot has previously
exhibited high competency.

4 CONCLUSION
Natural human feedback does not always comply with the assump-
tions built into many ML algorithms: particularly, the assumption
that feedback is Markovian and time consistent. In order to develop
lifelong, interactive learners, it is paramount that we understand
and model how people continuously adapt their feedback based on
their changing expectations of the robot’s behavior. By acknowl-
edging the dynamic nature of human-robot interaction and the
need for online learning mechanisms that account for how people
adapt their feedback based on the robot’s competency, we can build
models that inform how RL algorithm should interpret and learn
from natural human feedback.

In this paper, we surveyed how prior work makes assumptions
about how people provide feedback to robots. We proposed several
research questions and hypotheses to guide future work on this
topic and, finally, proposed a user study to evaluate how a robot’s
competency influences how people correct its motion. We expect
that this work will reveal insights on how ML algorithms can more-
effectively interpret and leverage natural human feedback.
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