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ABSTRACT

Assistive in-home robots are one solution to help an aging pop-
ulation. To provide effective care, robots must be adaptable and
personalizable, as everyone has different needs and preferences. We
want to enable people to communicate their preferences to a robot
intuitively. In this work, we propose a method where users critique
the robot by intervening when the robot makes a mistake or does
not follow the user’s preference, in a learning from demonstra-
tion setting. The robot then learns interpretable features about the
users’ goals and preferences based on the intervention. We propose
a series of user studies to inform and validate our framework.
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1 INTRODUCTION

Due to an aging population, there is a shortage of caregivers [24, 38].
One solution for this shortage is to help people age in place; robots
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can offer assistance to enable older adults to live independently for
longer. As assistive robots will be deployed in home environments,
these robots must be personalizable in order to meet diverse sets of
possible needs and preferences. Additionally, people’s preferences
will change as they age and their environments change. When a
robot performs a task incorrectly or not aligned with a user’s current
preference, users will need to be able to quickly and intuitively
correct the robot’s behavior.

One method that enables non-expert users to communicate their
preferences to a robot is Learning from Demonstration (LfD) [30].
In LfD, the robot learns from a recording of the human demonstrat-
ing the task. The simplest form of LfD, behavioral cloning (BC),
mimics the human, learning how to complete the task, but not why.
Unfortunately, BC is susceptible to covariate shift [31] and cannot
adapt when the transition function changes. Inverse reinforcement
learning (IRL) techniques attempt to understand context by learn-
ing a reward function for the human’s goal [25]. However, IRL
methods are not sample-efficient for the end-user [2, 16], and most
LfD techniques are not interpretable [33]. In this work, we propose
a new LfD framework that is interpretable, sample-efficient, and
enables the robot to predict which features a user wants the robot
to consider when learning a new behavior.

In an LfD setup, it can be difficult for people to identify and
communicate the features that are important to accomplishing the
task [14]. A more effective approach may be for people to critique
after observing a robot’s attempt to perform a desired task. We
posit that when people intervene during a robot failure or provide
corrective feedback, there is semantic information from which the
robot can learn. For example, if someone stops the robot when the
robot is close to colliding with an obstacle, the robot could learn
that the important feature is to keep a “safe” distance from obstacles.
Furthermore, when the person interrupts (e.g., how close the robot
is to the obstacle) can provide the robot with what a “safe” distance
means for that person. We propose to have the robot attempt the
task and have participants intervene when the robot behavior does
not match their preference. From these interventions, we will learn
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interpretable features that can help the robot understand environ-
mental and temporal context clues to improve the robot’s policy to
better account for human preferences.

Our goal is to provide users with an efficient and intuitive method
for personalizing robot behavior that can help robots adapt as peo-
ple’s lives change over their lifetimes. In this paper, we propose
a multi-study design to learn and evaluate a model for learning
interpretable features from interventions. First, we aim to conduct
a pilot study to gather a list of features from participants and utilize
this information to develop a user interface. Then we will conduct
a data collection study to train the framework. Participants will
watch the robot attempt a series of household tasks and intervene
when the robot does not behave as expected or desired. After in-
tervening, participants will label the feature of importance using
the interface. Then participants will provide a demonstration of
the correct behavior to the robot. After training the model, we aim
to evaluate our framework and features compared to baselines (i.e.
without features, behavioral cloning, and ablations of our method).
We plan to learn generalizable features that can be used to correct
and improve a robot’s behavior to best suit the end user.

2 RELATED WORKS

LfD seeks to enable humans to teach robots new skills via human
task demonstrations without the need for users to have program-
ming experience [30]. Robot-centric LfD learns from a human’s
corrective feedback as the robot executes the task in the form of
action corrections [32] or scalar feedback [15, 21]. Our work is
inspired by Kelly et al. [20] and Spencer et al. [37] who proposed
having people take over task execution when the robot deviates
from the desired behavior. We go beyond this prior work, learning
to predict semantically meaningful features from the interventions.

Our approach for LfD addresses the reality that robots will not
know a priori which features a user cares about when specifying
a new behavior via demonstration. With a feature mismatch, the
robot will fail to learn the skill, which can result in trust degrada-
tion [17, 19, 34]. In our work, we focus on system and design er-
rors [39] to inform how we should design our feature-specification
interface for LfD. Additionally, we investigate ambiguous or sub-
jective failures, which are based on people’s preferences [26].

LfD researchers have considered various approaches for learning
from robot failures. One solution is to request demonstrations from
the user to learn how to recover [8] or allow the user to intervene
[10, 20, 28, 37]. Other methods learn constraints from the demon-
strations to learn “safe” boundaries for the policy [23, 27]. Our work
is complementary to prior work as we aim to use the information
learned from the robot’s failure and the human’s intervention to
determine features of importance and improve the robot’s policy.

Prior work has also investigated learning what feature prompted
an instance of user feedback [6]. In such a setting, Bajcsy et al.
[4] show that learning one feature per intervention compared to
all at once results in improvements in objective and subjective
results. Learning-based approaches that use neural networks are
not guaranteed to be interpretable to a non-expert user; however,
interpretability offers the benefit of transparency and agent ac-
countability [33]. We endeavor for our features to be readable,
human-worded, and understandable [40]. Das et al. [11] expand on
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Figure 1: This figure depicts our four domains.

learning interpretable features, showing that presenting both the
context of the failure and preceding robots actions to be helpful. As
prior work has found that querying people affords interpretable,
relevant features and that contrasting examples are key to feature
specification, we obtain our features directly from participants by
soliciting feedback as they observe the robot attempt the task [9].

3 METHODS

In this work, we design a framework that learns users’ preferences
for how a robot should complete a task based on user intervention
during failure. An overview of our experiment procedures is in
Figure 2. We will first conduct a pilot study to evaluate our experi-
mental design and elicit a list of relevant features from users. Then
we will conduct a data collection study where users interrupt the
robot, label features, and provide demonstrations for the correct
behavior. After training our framework, we will evaluate our algo-
rithm in a final evaluation study. This section details our research
questions, experimental setup, Institutional Review Board approved
study design, and our model architecture.

3.1 Research Questions

RQ1: Can we learn interpretable features from interventions?
We investigate whether we can learn to predict features of interest
from participant interventions. We further validate whether the
learned interpretable features generalize to novel users.

RQ2: Does adding features improve performance over a baseline
without features? We evaluate whether understanding the relevant
features improves the objective robot performance and the user’s
perception of the robot’s performance.

RQ3: Does communicating to users the anticipated feature of
interest impact the users’ perceptions of the robot? We investigate
whether communicating the predicted feature of interest when a
user interrupts the robot changes the perceptions of the robot.

3.2 Experiment Setup
We use the Spot robot [1] to learn household chores via L{D.

3.2.1 Domains. We design four household tasks as the domains
(see Figure 1) because prior work has shown that cleaning and
chore tasks are relevant for assistive robots [35, 36]. Additionally,
we chose these domains because chores are tasks that a robot could
help with and each domain has human preferences (e.g., where to
place a dish in the dishwasher). We add risk to some tasks (e.g.,
robot holding a knife) to increase the stakes for robot failures. We
will further refine the design of the domains in a pilot study.

Loading the Dishwasher: The robot’s goal is to place the plastic
dish in the tabletop dishwasher. A preference could be having the
dish placed upside-down.
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Figure 2: (1) In the data collection study, the robot attempts the task, then the human interrupts the robot, by pressing the
red button, because the robot is pointing the knife at the person. The human labels the feature as incorrect orientation, and
then demonstrates the correct behavior to the robot. (2) We will use this data to train our framework. The behavioral cloning
network, hW’ learns a robot action, a, from the robot state, s,, state of the environment s,,, and predicted human feature set, f.
These features, f, are outputs from the feature prediction network, gg, which takes robot trajectory 7,, environment object
trajectories 7,,, and human intervention timestep, ¢. (3) During evaluation, after the human interrupts the robot, the robot
predicts the feature of interest for that person. Then based on the feature, the robot executes the correct behavior.

Putting Bleach Away: The robot’s goal is to place the bleach
bottle on the pantry shelf. A preference could be putting cleaning
products on a different shelf than food items.

Sweeping Up Glass: With a hand-held broom, the robot’s goal
is to sweep the plastic “broken glass” into a dustpan without spilling.
An example preference could be the broom’s orientation.

Cutting Food: The robot must use a real knife to cut the play-
dough cookie roll into properly-sized cookies to bake. A preference
could be the angle at which the cookie dough is cut.

3.2.2  Wizard-of-Oz Trajectories. In each domain, we pre-specify
six robot trajectories: two successes, two objective failures, and
two subjective failures. To show the participants a consistent set
of robot behaviors, the result of the robot’s policy rollout is a pre-
determined trajectory. An objective failure occurs when the robot
fails to complete the task goal (e.g., colliding with the dishwasher).
A subjective failure is when the robot achieves the goal without sat-
isfying a user’s preferences (e.g., placing the dish in the wrong ori-
entation). We expect that for objective failures, people will interrupt
uniformly, so we add subjective failures to study personalization.

3.3 Study Procedures

Pilot Study — We will run a pilot study to determine whether
participants perceive each trajectory as intended (i.e., successful
trajectories are perceived as successes, objective failures as failures,
and subjective failures are sometimes perceived as failures). Past
experiments have shown that participants do not intervene, even if
the robot is colliding with objects [26]. As such, we will evaluate
(and improve) our instructions to determine whether participants
intervene when observing robot failures.

Participants will observe each trajectory in each domain. The
order is based on the domain ordering condition (see Section 3.4). If
a participant interrupts a trial, we will ask why they interrupted the
robot. Their verbal explanation will be recorded via a microphone.
After the study is concluded, these natural language explanations
will be analyzed to determine a core set of important features across
domains. We aim to collect a dataset of features of importance from
the population rather than using an experimenter-defined dataset.
Our goal is for these features to be generalizable to future domains.

To obtain these features, we first transcribe the interviews and
conduct a thematic content analysis [3]. We will then design a
graphic user interface (GUI) for users to choose which feature
modifications are necessary post-interruption.

Data Collection — We propose to conduct a within-subjects
(n = 40) data collection study where participants will observe the
robot complete tasks in each of the domains, akin to the pilot study.
After interrupting the robot, participants will use our developed
GUTI to indicate which feature the robot performed incorrectly. Then,
participants will provide a demonstration via motion-capture, so
we can understand how the robot should have performed the task
differently. We will use this data to train our model (Section 3.5).

Evaluation Study Design — We will conduct a 4x4 between-
subjects experiment with 16 participants per condition. The two
factors of this study are the Domain Ordering and the Feature
Conditions (Section 3.4). We will evaluate whether a robot policy
that learns the important features characterizing an intervention is
more effective at learning user preferences. Participants will first
fill out pre-study surveys to collect demographic information. Then
participants will observe the robot attempt a series of household
tasks based on the Domain Ordering Condition. After each trial,
participants will complete the post-trial surveys. If participants’
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interrupt a trial, the robot will communicate the inferred feature
or the user will input the feature using the GUI, dependent on the
Feature Condition. The robot will then attempt the task again, with
the policy updated based on the Feature Condition. Each partici-
pant will only experience one Feature Condition. After all trials,
participants will complete the post-study surveys (Appendix 6).

3.4 Conditions

We describe the two types of conditions below:

1) Domain Ordering Condition — The participants experience
four domains in this study. The order in which the domains are en-
countered is randomized and counterbalanced using Latin Squares
to mitigate the learning effect (see Appendix Section 7.1).

In each domain the participant observes the robot execute a
pre-determined policy for six trials, resulting in two successful
outcomes and four failure outcomes (two objective and two subjec-
tive failures). Prior work has shown that the frequency and timing
of robot errors impact user behavior and perception of the robot
[12]. As such, the order of the trials (success vs. failure) for each
sequential domain is randomly set and then held constant for all
participants (see details in Appendix Section 7.2).

2) Feature Condition — In this study, the participant will ob-
serve the robot rollout its policy for multiple trials. The participant
is asked to interrupt the robot when the robot makes a mistake.
The robot will then infer the feature of importance and attempt the
trial again. Feature Condition refers to how the inferred feature is
employed. The feature conditions we consider are as follows.

e Ours (learned feature): The robot infers and communicates the
feature (using templated language, e.g. “I think you interrupted
because of X”). The robot then attempts the task using the learned
feature (Section 3.5).

e No feature: As a baseline, the robot simply learns via BC.

o Adversarial feature: The robot will infer the feature, then
choose a different feature to use and communicate to the user.
This accounts for bias when working with adaptive systems.

¢ Human chooses feature: Similar to the data collection study,
the user inputs the feature using the GUL. We want to determine
if users prefer to tell the robot the feature or have the robot guess.

3.5 Model Architecture

In our model architecture (Figure 2.2), we learn the features via the
Feature Prediction Network, g4. The inputs to g4 are the robot state
trajectory, 7r, the states of the objects in the world, r,y, and the time
of interruption, t. The network learns an embedding via an attention
layer which is then fed through a linear layer. The output of g is a
classification encoding the feature of importance. We will train this
model using cross-entropy loss and the labeled features from the
data collection study. The robot will learn a trajectory policy using
a behavioral cloning model as a baseline (no feature condition),
where the robot state, s,, and world object state, s,,, are mapped to
the robot’s action, a. In our framework, we add the feature vector, f,
as an input to the policy network, hy. The model assumes that the
reason for interruption, given state, is homogeneous across people.
Therefore, if two people interrupt in the same state, the model will
predict the same feature. However, we assume that people will
interrupt in different states based on their preferences.
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3.6 Metrics

e Framework Training Metrics — We will first test our frame-
work with a holdout dataset, assessing the accuracy of the feature
predictions and model training time.

Pre-Study Metrics — We will collect demographic information
about participants, including personality [13] and participants’
attitudes towards robots [29].

o Post-Trial Metrics — We will measure feature accuracy by ask-
ing participants if the robot guessed the correct feature. Objective
accuracy of the robot’s policy will be calculated based on task
completion. To account for preferences, we will measure per-
ceived robot accuracy on a success scale (1-10).

Post-Study Metrics We will measure participants’ reliance on
the robot via intervention rate over all trials. We will compare
participant responses on the Trust in Automation [22] subscales
and assess usability [7], perceived safety [5], and workload [18].

4 RESULTS AND FUTURE WORK

We have completed our pilot study with 13 participants with a mean
age of 23.8 and standard deviation of 1.03 (30.8% Female, 69.2% Male).
We found that, on average, participants rated successful trials with
a score of 7.8 out of 10, subjective failures with 5.8 and objective
failures with 4.0. We aimed to design the tasks such that, successes
will score 7-10, subjective failures 4-6, and objective failures 1-3.
On the dishwasher task, participants rated successful trials lower
than expected: 5.9, due to the robot releasing the dish from too high.
On the bleach task, the objective failures were rated higher than
expected: 5.6, due to not all participants rating collisions negatively.
We plan to redesign the dishwasher task and tell participants that
the robot should complete the tasks without colliding.
Additionally, many participants did not interrupt until after the
robot failed irrecoverably (e.g., wiped all the glass on the floor).
We plan to include a warn button, that does not stop the robot, so
participants can indicate when the robot might be about to make a
mistake. This way, the human corrective demonstrations can show
how to avoid failure instead of starting after the interruption point.
From the pilot study, the features that participants provided are
orientation of the object, position of the object relative to other
objects in the environment, and speed of the robot. We will incorpo-
rate these features into the GUI. Next, we plan to conduct the data
collection study, train the model, and then evaluate our framework
with the evaluation study. In the future, we also aim to conduct
this study with a target population of older adults. Our goal is to
develop a framework that can generalize to new users and enable
them to personalize robot behavior through simple interventions.

5 CONCLUSION

We propose a multi-phase study to learn interpretable features from
interventions. We posit that we can learn people’s preferences for
robot behavior based on when someone decides to stop a robot. We
design an experiment where the robot performs household chores
with varying levels of success and participants stop the robot when
it is making a mistake. We plan to collect data from users to train a
framework to learn features that inform a robot’s behavior policy.
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6 APPENDIX: INTERVIEW QUESTIONS

Post-Study Interview Questions

e What can the robot do?

e What can’t the robot do?

e What does the robot know/ understand?

e What does the robot not know/ understand?

e When did you interrupt the robot?

e What were your thoughts on the process of working with the
robot?

e Do you have any feedback for us about the user interface?

e Was there anything missing from the interface?

Post-Interruption Interview Questions

Why did you interrupt the robot?

What did the robot do wrong?

How should the robot’s behavior change?

Describe how the robot should do this task.

Do you trust the robot?

Do you trust the robot to do this task?

Post-Rollout Interview Questions

e On a scale of 1 to 10, was the robot successful in this trial?

7 APPENDIX: CONDITIONS

7.1 Domain Ordering Condition

The following table lists the domain ordering in the four domain
ordering conditions, obtained via a Latin square. Each participant
experiences one domain ordering condition.

Hedlund-Botti, et al.

Domain 1 Domain 2 Domain 3 Domain 4
Domain Ordering 1 Filling the Dishwasher Putting Bleach Away  Sweeping Up Glass Cutting Food
Domain Ordering 2 Putting Bleach Away  Sweeping Up Glass Cutting Food Filling the Dishwasher
Domain Ordering 3 Sweeping Up Glass Cutting Food Filling the Dishwasher Putting Bleach Away
Domain Ordering 4 Cutting Food Filling the Dishwasher ~Putting Bleach Away = Sweeping Up Glass
7.2 Outcome Ordering in Each Domain
The following table lists the ordering of outcomes in the domains
the participant experiences sequentially, randomized then held
constant for each participant.
Domain 1 Domain 2 Domain 3 Domain 4
Outcome 1 Objective Failure  Objective Failure = Objective Failure  Success
Outcome 2 Subjective Failure Success Subjective Failure = Subjective Failure
Outcome 3 Subjective Failure Success Success Success
Outcome 4 Objective Failure  Subjective Failure Subjective Failure —Objective Failure
Outcome 5 Success Subjective Failure Success Objective Failure
Outcome 6 Success Objective Failure = Objective Failure = Subjective Failure
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