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Abstract—Children with Autism Spectrum Disorder find
robots easier to communicate with than humans. Thus, robots
have been introduced in autism therapies. However, due to
the environmental complexity, the used robots often have to
be controlled manually. This is a significant drawback of such
systems and it is required to make them more autonomous.
In particular, the robot should interpret the child’s state and
continuously adapt its actions according to the behaviour of the
child under therapy. This survey elaborates on different forms
of personalized robot behaviour models. Various approaches
from the field of Human-Robot Interaction, as well as Child-
Robot Interaction, are discussed. The aim is to compare them in
terms of their deficits, feasibility in real scenarios, and potential
usability for autism-specific Robot-Assisted Therapy. The general
challenge for algorithms based on which the robot learns proper
interaction strategies during therapeutic games is to increase
the robot’s autonomy, thereby providing a basis for a robot’s
decision-making.

Index Terms—Robot-Assisted Therapy, Autism Spectrum Dis-
order, personalized behaviour model

I. INTRODUCTION

In the European Union, there are over 5 million people
affected by autism [I] and it is estimated that 1 in 160
children all over the world is diagnosed with Autism Spectrum
Disorder (ASD) [2]. People with ASD often have difficul-
ties in social interaction and communication. To alleviate
the effects of ASD, individualized therapies are provided.
However, autistic children find robots easier to communicate
with than humans (3], thus Robot-Assisted Therapies (RATSs)
have been being investigated. During RAT, most of the time
therapists have to control the robot remotely (Wizard of Oz
approach) [1]] [4]-[7]. Because of it, the therapist might not
be able to fully focus on the therapy and react appropriately
to the child’s behaviour [8]. To reduce their workload, the
autonomy of the robot has to be increased, namely it should
be able to interpret a child’s behaviour and adapt its actions
to the individual needs of the child [9].

Adaptation is possible if the robot actively learns a user
model that encodes certain attributes of the user. The user
model can be integrated into a robot decision-making al-
gorithm [[10] called a behaviour model, which allows the
system to choose appropriate robot reactions in response to the
actions of each individual user. Personalization refers to the
adaptation of the system to the individual user over time [10]
and can be solved by using Interactive Machine Learning
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(IML), which involves the user in the learning loop [/11].
IML usually makes use of learning from guidance or learning
from feedback. Learning from guidance relies on an external
supervisor (e.g. therapist), who provides expert knowledge to
the system (Figure Ta). The supervisor is able to assess the
decisions of the robot before being executed, namely they
are able to accept, or alternatively reject and override the
suggested reaction of the robot. This solution guarantees that
the system will not execute any undesirable actions during
learning, but is sensitive to the mistakes of the supervising
person. On the other hand, learning from feedback uses direct
feedback from the user (e.g. engagement level of the user)
(Figure Tb). As there is no supervising person, the robot has
to explore by itself what effects its actions have.

In this work, different personalized behaviour models
present in the Human-Robot Interaction (HRI) field are de-
scribed and compared. The discussed concepts are based on
the aforementioned IML techniques and are compared in terms
of their potential usability and feasibility in real-life autism
RATs. We believe that the provided survey can aid the design
of solutions for increasing the autonomy of robots used in
ASD therapy. Section [[I] describes other surveys related to
the topic of adaptation and personalization techniques in HRI.
Section [[II| provides an analysis of four personalization tech-
niques and elaborates on their usefulness in autism therapies.
Various open challenges are presented in section Section
[V] provides a conclusion and elaborates on our planned future
work.

II. RELATED SURVEYS

The related literature provides a structured taxonomy of
robotic systems capable of adapting to user differences. Mar-
tins et al. [[12]] proposed to categorize user-adaptive systems
into three classes: (i) systems with no user model (dominated
by reactive behaviour, no user information is maintained), (ii)
systems with a static user model (information about the user is
used, but defined apriori), and (iii) systems based on dynamic
user models (the information about the user is continuously
updated through interaction). In [[13]], a robot’s adaptiveness
to a user is specified as behavioural adaptation and several
approaches with and without experimentation setups are de-
scribed. Rossi et al. [10]] elaborate on different forms of be-
haviour adaptation that are possible when developing a social
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Fig. 1: Two methods of agent interactive learning: (a) learning
from guidance, (b) learning from feedback

robot, namely physical, cognitive and social adaptation. In this
related literature, there is a limited elaboration on methods
of providing robot adaptation in healthcare and education
applications (which is the main interest of our work), i.e.
improving the user’s performance in certain tasks.

These topics are addressed in [14] and [15]. Tsiakas et
al. [15] provide a generic taxonomy based on the following
categories: task type and requirements, interaction types and
roles (of the robot and humans in the interaction), level
of autonomy, personalization dimensions (e.g. task difficulty,
supportive feedback, proxemics). The healthcare domain was
especially covered in [16], where robot behaviour control
architectures are classified based on the robot’s role in the
interaction, namely: companion (assisting humans in carrying
out a variety of tasks), therapeutic play partner or peer
(used to support human therapists in therapeutic games) and
coach (conducting therapeutic scenarios by providing task de-
scriptions, feedback, and monitoring the user’s performance).
Although several approaches for children with ASD are men-
tioned in [16]], many do not address the problem of user adap-
tation. Kubota and Riek [[17] elaborate on behaviour adaptation
in robotics applied to neurorehabilitation and describe com-
monly used algorithms in that field as well. While the above
literature mentions adaptation methodologies used in therapies
with children with ASD, there is a lack of comparisons of
personalization behaviour models from different HRI domains
in order to find approaches that will help in designing solutions
for RATS for children with ASD.

III. REVIEW OF PERSONALIZED BEHAVIOUR MODELS

This work provides an overview of four personalization
problems that are solved in the context of HRI. The found
approaches are analyzed in terms of the usability for RAT for
children with ASD. They are categorized into four personaliza-
tion dimensions [15] (here we consider only aspects in which
the robot control can be adjusted): social behaviour, game
difficulty, affection, and user preferences (e.g. proxemics). It
is particularly desired that the robot is able to personalize
its behaviour such that it improves a child’s performance in

therapeutic games (with or without the help of a therapist).
This can be done by adjusting the difficulty of the games
to each individual child. Additionally, the robot should react
properly when the interaction with a child does not go as
planned, which means that it should prevent the child from
getting bored, disengaged or demotivated, for instance by
providing reengaging and motivating feedback.

A. Literature inclusion criteria

To find relevant publications, we used the Google Scholar
search engine. We performed a search based on the fol-
lowing keywords: robot personalization, robot adaptation,
Robot-Assisted Therapy, autism, Autism Spectrum Disorder,
behaviour model. In a first stage of the search, we looked for
publications that relate to the concept of continuous adaptation
in HRI. Secondly, we limited our target field to domains closer
to ASD therapy, namely robots as learning tutors or peers, such
that we included existing approaches directly associated with
robot ASD therapy as well.

B. Social behaviour personalization

Social behaviour personalization refers to how a robot
adapts its gestures, facial expressions, and language content
(e.g. type of feedback) to a user. The aim of this personal-
ization technique is to maintain user involvement in the inter-
action. One of the state-of-the-art solutions is the supervised
autonomy system for RAT for children with ASD, which was
introduced in the DREAM project [9], [18]]. In this system,
the robot produces actions according to therapeutic scripts
defined by therapists; however, when the interaction does not
go as planned, the robot tries to seek appropriate actions on
its own [|18]. Here, supervised autonomy means that the robot
is able to adapt its behaviour to the behaviour of the children
(after assessing it based on sensor data). This is similar to
the learning from guidance concept as, before
executing any actions, the robot requests the therapist for
feedback about its suitability. Once feedback has been obtained
(the therapist accepts or overrides the suggested action), the
robot executes the appropriate action and includes the feedback
into its behavioural model for learning. Then, the new state
of the child is acquired. This approach has been successfully
deployed and evaluated in real-world scenarios with children
with ASD [18]], but it was not personalized, as the learning
procedure was performed on data from all children that were
participating in the experiments.

One proposed algorithm for decision-making is a feed-
forward network [19]]. This has good generalisation abilities
and can be personalized to a specific person [20], but has to
be retrained every time therapist feedback is obtained. This
might make this solution inappropriate for online real-time
interactions in case of long-time scenarios [21], as the learning
time increases with the amount of collected data. Another
proposed solution is based on reinforcement learning with
the Q-learning algorithm [22], [23]]; however, in Q-learning,
a considerable amount of data is needed to obtain an optimal
policy, which means that a significant number of interactions



with the user is required. To guarantee fast convergence of
this algorithm, the problem has to be decomposed so that
the Q-value table stays relatively small [24]]. To reduce the
memory requirements and make the learning converge faster,
the MAXQ hierarchical reinforcement learning algorithm [25]]
is used in [26], where a robot providing personalized assistive
behaviours for a memory game is developed. This memory
deficit was faced in [11] as well, where applying nearest
neighbors allowed to obtain a reasonable training time; this
result was achieved in spite of the high dimensionality of
the state and action spaces. The aforementioned approach was
tested in a study with 75 typically developing children playing
an educational game about food webs.

Most of the aforementioned approaches are based on learn-
ing from guidance [9], [[11]], [19], [23[], which is advantageous
especially for systems where robot mistakes imply ethical
concerns, but is very dependent on the supervisor. This can
have a negative impact on the learned policy, especially
when the supervisor makes wrong decisions. The effects of
therapist mistakes can be alleviated if the reinforcement signal
is obtained directly from the user. This is done by applying
learning from feedback (Figure 1Db), where the robot has to
find appropriate actions on its own. The concept of combining
learning from guidance and feedback is also presented in [27].
In [24], [26], [28] approaches for personalizing a robot’s
behaviour in real-life scenario based exclusively on learning
from feedback are described. In [28]], the robot was deployed
in the role of a tutor that was giving lessons when a user
was playing a nonogram puzzle game. This approach is
limited to providing users only with lessons that complement
their missing knowledge and is not able to react when the
interaction does not go as planned (e.g. the user becomes
disengaged in the game).

C. Game difficulty personalization

The solutions presented so far are adaptive in terms of the
reactions to a user’s behaviour. However, it is also important
to autonomously adapt the game that is the basis of the
interaction during a therapy. Particularly in RAT for children
with ASD, there is a need for game difficulty personalization
that would match each child’s skill level. Systems that can
provide the aforementioned adaptation are based mainly on
learning from feedback. A personalization concept based on
adapting the progression of a lesson to a user’s performance is
covered in [2]], [29]—[31]. In [2], [29] reinforcement learning
is used in order to personalize feedback and instruction diffi-
culty levels during math games. In [30] Baxter et al. deploy
a rule-based adaptation algorithm, for instance based on a
comparison of the number of successfully completed tasks to
a predefined threshold. Here, only experiments with typically
developing children were conducted. Moreover, in [2], [29],
[31], a learning-based decision-making algorithm that would
generate proper actions in case of deviations of a user’s
behaviour (e.g. the child is disengaged or demotivated) is not
used.

This deficit is faced in [32]], where Q-learning is used so that
a robot can adapt the difficulty of a game as well as provide
encouraging or challenging feedback to the user. In addition,
an investigation on how different methods of updating the Q-
table can increase the speed of convergence of the policy is
presented and user models that can be used for initial training
or testing of the proposed framework are provided. Here, it is
suggested not to start learning a policy from scratch (in case
there is a new user of the system), but to start from the policy
already learned during tests with a certain user model. This
concept is applied in [27], where it is shown that it indeed
reduces the number of iterations required for the policy to
converge. It should, however, be mentioned that neither [32]]
nor [27] presented experiments with real users and in both
cases, the created user models do not reflect the behaviour of
a person with ASD.

D. Affective personalization

Affective personalization is another aspect of personaliza-
tion of a robot’s behaviour that is based on learning from
feedback. Here, the robot is supposed to explicitly maintain
an internal affective state, which impacts its interaction with
the user. In [8], [33]], the effect of the robot acting as a
personal character that has its own affect (e.g. emotion) is
investigated. In particular, the robot’s affect is influencing the
robot’s non-verbal and/or verbal behaviour during the human-
robot interaction. In [33]], using the SARSA reinforcement
learning algorithm [34]], the robot is learning how to maximise
the engagement and valence (positiveness of emotion) of a
child during a game. Here, the action space represents the
change in engagement and valence of the robot. The policy
was however, not able to converge during the interaction,
which was performed over seven sessions. In [8]], the affective
state of a robot is influenced by an occurred event and the
robot’s personality according to the Orthony Claire Collins
model [35]]. However, if and how the personality of the robot
was adapted to the child’s one is not mentioned.

A robot having its own affect has not been shown to be
advantageous during autism therapy, as it is suspected that
affective adaptation may cause children with ASD to become
overwhelmed [8|]. Moreover, autistic children usually have
difficulties recognizing and expressing emotions [6[]; thus, a
system that estimates the child’s affective state and uses it for
learning may lead to a suboptimal behaviour model.

E. Personalization based on user’s preferences

A robotic system may also be able to create a model of
the preferences of a user [36], [37], such as the preferred
speech volume of the robot or the robot’s distance to the
user. Having that information, the robot can adapt its actions
to the user’s individual needs [38]], [39]]. This field of user-
adaptive robotics is based on the concept of learning from
feedback and, to the best of our knowledge, is not covered
in RATSs for children with ASD. However, as such children
often have sensory difficulties [40]], incorporating a model of
their preferences in the robot’s decision-making process may



be advantageous. The contribution of [36], [37] is an approach
for creating user models, but no decision-making algorithms
are provided. Additionally, experiments are mainly conducted
in simulation or with a relatively small number of real users.

In [38]], [39], robots are able to model user preferences and
use the collected knowledge to choose appropriate actions.
These solutions are based on an inverse reinforcement learn-
ing [39]] and a model-based reinforcement learning [38]]. The
main disadvantage of [39] is the fact that the communication
with the robot is limited as it can recognize only four hand
movements; however, an algorithm that enhances the learning
speed of the robot by identifying only relevant variables that
define the robot’s state is provided. In [38], an approach where
a robot is rewarded for its actions according to their impact is
presented, such that the robot’s knowledge about the impact of
the actions is continuously updated. The proposed algorithm
was tested in real and simulated trials, but was not able to
converge during tests with human users.

IV. CHALLENGES

After the analysis of different personalization approaches, a
few challenges in terms of their application in the field of RAT
for children with ASD remain. These challenges are related
to the fact that the developed system has to learn and react
quickly so that it can be used in real-life interventions. The
four identified challenges are as follows:

« maintenance of an adequately big state and action space
enabling the robot to personalize the game difficulty
and its reactions to a specific child’s behaviour (e.g.
disengagement during the game),

o fast convergence to an optimal policy without the need
for a significant number of interactions with the user, or
finding a policy that is sufficient for effective practical
interaction,

« evaluation during interaction with real people, and

¢ resistance to the supervising person’s mistakes.

While this survey focuses on RAT for children with ASD,
it should be noted that first three challenges are independent
of this domain and could be considered common for diverse
HRI applications. The first challenge consists of two aspects.
First of all, the developed model should help therapists in
improving a child’s performance; this can be done by adjusting
the difficulty of games according to each child’s skill level.
Secondly, the robot should prevent the user from getting bored
or demotivated during therapy, by providing, for example,
motivating feedback. In many approaches, only one of those
aspects was covered. Additionally, the small size of the ac-
tion/state space often significantly reduces the capabilities of
the robot. These problems are present in [2f], [19], [23], [27]-
[29], [31], [33]]. The second challenge is related to the need
for the system to quickly adapt to the user, for example in
order to reduce the workload of the supervisor as quickly as
possible. That aspect was a deficit especially in [23], [29],
[33], [38]. The third challenge is related to the fact that
many approaches have not been tested in human trials. As
it is usually difficult to conduct such studies, many proposed

personalization methods are tested with user simulations; for
instance, the personalization algorithms in [[19], [23]], [27]], [32]]
were not tested on robots interacting with human users. The
last challenge is relevant mainly for approaches that are based
on learning from guidance, namely inappropriate decisions of
the person supervising the robot may significantly affect the
approaches presented in [9], [11]], [18], [19], [23].

The first challenge could be addressed by applying the
algorithm presented by Senft et al. [[11]. A potential solution
for the second and fourth challenge would be to combine
the learning from feedback and learning from guidance ap-
proaches (as done in [27]], [41]), which would make the system
more resistant to the supervisor’s mistakes and would improve
the speed of policy convergence [27]]. The latter can be also
achieved by starting the learning process from a generic policy
(pretrained on user simulations [32]]) rather than from scratch.
Moreover, this method could help in addressing the problem of
generalization between users while accounting for individual
differences.

V. CONCLUSION

This work aims at providing an overview of different
personalization techniques and a discussion on their appli-
cability in the therapy for children with ASD. Approaches
in four different personalization dimensions were discussed;
however, based on the surveyed literature, we conclude that
two techniques are mostly used and are adequate for autism-
specific RAT, namely social behaviour personalization and
game difficulty personalization. We also identified the deficits
of various recent approaches and formulated the challenges in
applying them in the context of autism therapy.

As future work, we plan to develop a robot that would
support the therapist when conducting therapy for children
with ASD. We particularly want to address the first two
of the aforementioned challenges, namely the robot will au-
tonomously personalize the therapy game content to the child’s
individual skills. To maximise the learning gains, the robot
will also react if a child’s disengagement or demotivation
is perceived. Another requirement is that the personalized
behaviour model should converge fast so that no significant
amount of interactions with the child is necessary; for this,
we are considering the use of active learning and policy
pretraining.
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APPENDIX

A comparison of the analyzed behaviour models is provided
in Table [l Each row describes one of the aforementioned
approaches and contains a reference, the aspect in which
the robot was personalized, and the type of personalization



learning algorithm (learning from feedback or learning from
guidance). The name of the personalization algorithm and
features that were used for learning are specified as well.
Additionally, the last column contains information on whether
the behaviour model was tested in long-term operation. This
means that the system repeatedly interacted with the same user
over a period of time that was longer than one week.
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TABLE I: Comparison of the personalized behaviour models

N o Demonstrated
Personalization . Personalization Features used for .
Reference Type of learning 5 5 long-term operation
aspect algorithm learning
(>1 week)
User’s engagement,
[19], [20] Guidance Feed-forward motivation, game X
network
progress
Characteristics of the
23] Guidance Q-learning simulation X
environment
[11] Guidance Nearest neighbors G?me P rggre§s and X
1nteraction state
Social behaviour Gaze and speech
124] Feedback Q-learning behavior of the user, X
game progress
User’s arosal and
[26] Feedback MAXQ speech, game X
progress
28] Feedback Bayessian network User_s progress in X
skill learning
127] Feedback, guidance Q-learning Game progress X
Game progress,
21, 129] Feedback Q-learning number of user’s v
Task difficulty help requests
[30] - Rule-based Game progress v
[31) - - Game progress v
Social behaviour, . User’s engagement
(32 task difficulty Feedback Q-learning and game progress X
User’s engagement,
133] Affection Feedback SARSA valence, game v
performance
User’s age, gender
and activity
139} Feedback Inverse_ remforc_ement _preferences; ) X
learning algorithm environmental noise
and brightness;
daytime
User’s preferences User’s satisfaction
138]] Feedback reinforcement S SP & X

learning algorithm

volume and distance
to the user, time of
day
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